Modeling Pharmacokinetics in Individual Patients Using Therapeutic Drug Monitoring and Artificial Population Quasi-Models: A Study with Piperacillin

Karvaly, Gellért Balázs ✉ [Karvaly, Gellért Balázs (klinikai kémia), szerző] Laboratóriumi Medicina Intézet (SE / AOK / I); Vincze, István [Vincze, István (gyógyszerészeti), szerző] Laboratóriumi Medicina Intézet (SE / AOK / I); Neely, Michael Noel; Zátroch, István [Zátroch, István (aneszteziológia é...), szerző] Uzsoki Utcai Kórház; Nagy, Zsuzsanna [Nagy, Zsuzsanna (Klinikai biokémikus), szerző] Uzsoki Utcai Kórház; Kocsis, Ibolya [Kocsis, Ibolya (laboratóriumi dia...), szerző] Laboratóriumi Medicina Intézet (SE / AOK / I); Kopitkó, Csaba [Kopitkó, Csaba (Aneszteziológia é...), szerző] Uzsoki Utcai Kórház

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: PHARMACEUTICS 1999-4923 16 (3) Paper: 358 , 19 p. 2024
  • SJR Scopus - Pharmaceutical Science: Q1
Azonosítók
Szakterületek:
  • Orvos- és egészségtudomány
Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual estimates of pharmacokinetic parameters. Based on 72 concentrations obtained in 12 patients, one- and two-compartment pop-PK models with or without creatinine clearance as a covariate were generated for piperacillin using the nonparametric adaptive grid algorithm. Thirty quasi-models were subsequently generated for each model type, and nonparametric maximum a posteriori probability Bayesian estimates were established for each patient. A significant difference in performance was found between one- and two-compartment models. Acceptable agreement was found between predicted and observed piperacillin concentrations, and between the estimates of the random-effect pharmacokinetic variables obtained using the so-called support points of the pop-PK models or the quasi-models as priors. The mean squared errors of the predictions made using the quasi-models were similar to, or even considerably lower than those obtained when employing the pop-PK models. Conclusion: fully artificial nonparametric quasi-models can efficiently augment pop-PK models containing few support points, to make individual pharmacokinetic estimates in the clinical setting.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2025-04-02 08:11