A magyar gazdaság versenyképességének növelése a lakosság egészségi állapotát javító
népegészségü...(GINOP-2.3.2-15-2016-00005) Támogató: GINOP
BigData-technológiával támogatott UDBD-Health adattárház fejlesztése és üzemeltetése(TKP2021-NKTA-34)
Támogató: NKFIH
Egészségbiztonság Nemzeti Laboratórium(RRF-2.3.1-21-2022-00006) Támogató: NKFIH
Covert tobacco advertisements often raise regulatory measures. This paper presents
that artificial intelligence, particularly deep learning, has great potential for
detecting hidden advertising and allows unbiased, reproducible, and fair quantification
of tobacco-related media content. We propose an integrated text and image processing
model based on deep learning, generative methods, and human reinforcement, which can
detect smoking cases in both textual and visual formats, even with little available
training data. Our model can achieve 74% accuracy for images and 98% for text. Furthermore,
our system integrates the possibility of expert intervention in the form of human
reinforcement. Using the pre-trained multimodal, image, and text processing models
available through deep learning makes it possible to detect smoking in different media
even with few training data.