Challenges in the thermal modeling of highly porous carbon foams

Fehér, A. [Fehér, Anna Éva (Hőtechnika), szerző] Energetikai Gépek és Rendszerek Tanszék (BME / GPK); Kovács, R. ✉ [Kovács, Róbert Sándor (termodinamika), szerző] Energetikai Gépek és Rendszerek Tanszék (BME / GPK); Gravitációfizikai kutatócsoport (RMI / ELMO); Sudár, Á. [Sudár, Ákos (Fizikus), szerző] Hadronfizikai kutatócsoport (RMI / NFO); Országos Onkológiai Intézet; Nukleáris Technika Tanszék (BME / TTK / NTI); Barnaföldi, G. G. [Barnaföldi, Gergely Gábor (Nagyenergiás magf...), szerző] Komplex Rendszerek Fizikája Tanszék (ELTE / TTK / FizCsill_I); Nehézion-fizikai kutatócsoport (RMI / ELMO); ALICE Collaboration (RMI)

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
  • X. Földtudományok Osztálya: D
  • SJR Scopus - Condensed Matter Physics: Q2
Támogatások:
  • (FK 134277) Támogató: NKFIH
  • (BO/00046/20/6) Támogató: Bolyai János Kutatási Ösztöndíj
Szakterületek:
  • Gépészmérnöki tudományok
The heat pulse (flash) experiment is a well-known, widely used method to determine thermal diffusivity. However, for heterogeneous, highly porous materials, neither the measurement nor the evaluation methodologies are straightforward. In the present paper, we focus on two open-cell carbon foam types, differing in their porosity but having the same sample size. Recent experiments showed that a non-Fourier behavior, called ’over-diffusive’ propagation, can be present for such a complex structure. The (continuum) Guyer–Krumhansl equation stands as a promising candidate to model such transient thermal behavior. In order to obtain a reliable evaluation and thus reliable thermal parameters, we utilize a novel, state-of-the-art evaluation procedure developed recently using an analytical solution of the Guyer–Krumhansl equation. Based on our observations, it turned out that the presence of high porosity alone is necessary but not satisfactory for non-Fourier behavior. Additionally, the mentioned non-Fourier effects are porosity-dependent; however, porous samples can also follow the Fourier law on a particular time scale. These data serve as a basis to properly identify the characteristic heat transfer mechanisms and their corresponding time scales, which altogether result in the present non-Fourier behavior. Based on these, we determined the validity region of Fourier’s law in respect of time scales.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2025-06-15 02:17