Model-independent embedding of directed networks into Euclidean and hyperbolic spaces

Kovács, Bianka [Kovács, Bianka (Komplex rendszere...), author] Department of Biological Physics (ELTE / ELU FoS); Palla, Gergely ✉ [Palla, Gergely (Elméleti és matem...), author] Egészségügyi Menedzserképző Központ (SU / DHS); Department of Biological Physics (ELTE / ELU FoS)

English Article (Journal Article) Scientific
Published: COMMUNICATIONS PHYSICS 2399-3650 2399-3650 6 (1) Paper: 28 , 16 p. 2023
  • SJR Scopus - Physics and Astronomy (miscellaneous): D1
Identifiers
Fundings:
  • European Union’s Horizon 2020 research and innovation programme(101021607)
  • (K128780) Funder: NR-DIO
  • (RRF-2.3.1-21-2022-00006) Funder: National Laboratory for Health Security
The arrangement of network nodes in hyperbolic spaces has become a widely studied problem, motivated by numerous results suggesting the existence of hidden metric spaces behind the structure of complex networks. Although several methods have already been developed for the hyperbolic embedding of undirected networks, approaches able to deal with directed networks are still in their infancy. Here, we present a framework based on the dimension reduction of proximity matrices reflecting the network topology, coupled with a general conversion method transforming Euclidean node coordinates into hyperbolic ones even for directed networks. While proposing a measure of proximity based on the shortest path length, we also incorporate an earlier Euclidean embedding method in our pipeline, demonstrating the widespread applicability of our Euclidean-hyperbolic conversion. Besides, we introduce a dimension reduction technique that maps the nodes directly into the hyperbolic space of any number of dimensions with the aim of reproducing a distance matrix measured on the given (un)directed network. According to various commonly used quality scores, our methods are capable of producing high-quality embeddings for several real networks.
Citation styles: IEEEACMAPAChicagoHarvardCSLCopyPrint
2025-04-10 21:43