Brittle-ductile transition stress of different rock types and its relationship with uniaxial compressive strength and Hoek–Brown material constant (mi)

Davarpanah, Seyed Morteza [Davarpanah, Seyed Morteza (építőmérnöki tudo...), szerző] Geotechnika és Mérnökgeológia Tanszék (BME / ÉMK); Sharghi, Mohammad; Narimani, Samad [Narimani Ghourtlar, Samad (geológia), szerző] Geotechnika és Mérnökgeológia Tanszék (BME / ÉMK); Török, Ákos [Török, Ákos (Üledékföldtan, mé...), szerző] Geotechnika és Mérnökgeológia Tanszék (BME / ÉMK); Vásárhelyi, Balázs [Vásárhelyi, Balázs (Kőzetmechanika), szerző] Geotechnika és Mérnökgeológia Tanszék (BME / ÉMK)

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: SCIENTIFIC REPORTS 2045-2322 2045-2322 13 (1) Paper: 1186 2023
  • Szociológiai Tudományos Bizottság: A nemzetközi
  • Regionális Tudományok Bizottsága: B nemzetközi
  • SJR Scopus - Multidisciplinary: D1
Rocks deformed at low confining pressure are brittle, which means that after peak stress, the strength declines to a residual value established by sliding friction. The stress drop is the variation between peak and residual values. But no tension reduction takes place at high confining pressure. A proposed definition of the brittle-ductile transition is the transition pressure at which no loss in strength takes place. However, studies that consider information about the brittle-ductile transition, the criterion's range of applicability, how to determine mi, and how confining pressures affect m i 's values are scarce. This paper aims to investigate the link between brittle-ductile transition stress, uniaxial compressive strength and Hoek–Brown material constant ( m i ) for different kinds of rock. It is essential to accurately determine the brittle-ductile transition stress to derive reliable values for m i . To achieve this purpose, a large amount of data from the literature was chosen, regression analysis was carried out, and brittle-ductile transition stress (σ TR ) was determined based on the combination of Hoek–Brown failure criteria and the recently used brittle-ductile transition stress limit of Mogi. Moreover, new nonlinear correlations were established between uniaxial compressive strength and Hoek–Brown material constant ( m i ) for different igneous, sedimentary and metamorphic rock types. Regression analyses show that the determination coefficient between σ TR and UCS for gneiss is 0.9, sandstone is 0.8, and shale is 0.74. Similarly, the determination coefficient between σ TR and m i for gneiss is 0.88. The correlation between Hoek–Brown material constant ( m i ) and σ TR was not notable for sedimentary and metamorphic rocks, probably due to sedimentary rocks' stratification and metamorphic ones' foliation.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2024-12-13 19:24