A discrete time evolution model for fracture networks

Domokos, Gábor [Domokos, Gábor (Nemlineáris mecha...), author] Department of Morphology and Geometric Modeling (BUTE / FA); ELKH-BME Morphodynamics Research Group (BUTE / FA / DMMS); Regős, Krisztina [Regős, Krisztina (Geometria), author] MTA-BME Morphodynamics of solids Research Group (BUTE / FA / DMMS); Department of Morphology and Geometric Modeling (BUTE / FA); ELKH-BME Morphodynamics Research Group (BUTE / FA / DMMS)

English Article (Journal Article) Scientific
  • SJR Scopus - Management Science and Operations Research: Q3
We examine geological crack patterns using the mean field theory of convex mosaics. We assign the pair \left({\overline{n } }^{*},{\overline{v } }^{*}\right) n ¯ ∗ , v ¯ ∗ of average corner degrees (Domokos et al. in A two-vertex theorem for normal tilings. Aequat Math https://doi.org/10.1007/s00010-022-00888-0 , 2022) to each crack pattern and we define two local, random evolutionary steps R 0 and R 1 , corresponding to secondary fracture and rearrangement of cracks, respectively. Random sequences of these steps result in trajectories on the \left({\overline{n } }^{*},{\overline{v } }^{*}\right) n ¯ ∗ , v ¯ ∗ plane. We prove the existence of limit points for several types of trajectories. Also, we prove that cell density \overline{\rho }= \frac{{\overline{v } }^{*}}{{\overline{n } }^{*}} ρ ¯ = v ¯ ∗ n ¯ ∗ increases monotonically under any admissible trajectory.
Citation styles: IEEEACMAPAChicagoHarvardCSLCopyPrint
2025-01-15 15:53