Az orvos-, egészségtudományi- és gyógyszerészképzés tudományos műhelyeinek fejlesztése(EFOP-3.6.3-VEKOP-16-2017-00009)
Támogató: EFOP-VEKOP
(NKFIH K-128011)
The human GLUT1 (SLC2A1) membrane protein is the key glucose transporter in numerous
cell types, including red cells, kidney, and blood-brain barrier cells. The expression
level of this protein has a role in several diseases, including cancer and Alzheimer’s
disease. In this work, to investigate a potential genetic modulation of the GLUT1
expression level, the protein level was measured in red cell membranes by flow cytometry,
and the genetic background was analyzed by qPCR and luciferase assays. We found significant
associations between red cell GLUT1 levels and four single nucleotide polymorphisms
(SNP) in the coding SLC2A1 gene, that in individuals with the minor alleles of rs841848,
rs1385129, and rs11537641 had increased, while those having the variant rs841847 had
decreased erythrocyte GLUT1 levels. In the luciferase reporter studies performed in
HEK-293T and HepG2 cells, a similar SNP-dependent modulation was observed, and lower
glucose, serum, and hypoxic condition had variable, cell- and SNP-specific effects
on luciferase expression. These results should contribute to a more detailed understanding
of the genetic background of membrane GLUT1 expression and its potential role in associated
diseases.