Atrial fibrillation prediction by combining ECG markers and CMR radiomics

Pujadas, Esmeralda Ruiz ✉; Raisi-Estabragh, Zahra; Szabo, Liliana [Szabó, Liliána (kardiovaszkularis...), szerző]; Morcillo, Cristian Izquierdo; Campello, Víctor M.; Martin-Isla, Carlos; Vago, Hajnalka [Vágó, Hajnalka (Kardiológia, MR), szerző] Városmajori Szív- és Érgyógyászati Klinika (SE / AOK / K); Kardiológia Központ - Kardiológiai Tanszék (SE / AOK / K); Sportorvostan Tanszék (SE / AOK / K); Merkely, Bela [Merkely, Béla Péter (Kardiológia), szerző] Városmajori Szív- és Érgyógyászati Klinika (SE / AOK / K); Kardiológia Központ - Kardiológiai Tanszék (SE / AOK / K); Sportorvostan Tanszék (SE / AOK / K); Harvey, Nicholas C.; Petersen, Steffen E.; Lekadir, Karim

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: SCIENTIFIC REPORTS 2045-2322 12 (1) Paper: 18876 , 15 p. 2022
  • Szociológiai Tudományos Bizottság: A nemzetközi
  • Regionális Tudományok Bizottsága: B nemzetközi
  • SJR Scopus - Multidisciplinary: D1
Azonosítók
Támogatások:
  • (825903)
Szakterületek:
  • Szív és érrendszer
Atrial fibrillation (AF) is the most common cardiac arrhythmia. It is associated with a higher risk of important adverse health outcomes such as stroke and death. AF is linked to distinct electro-anatomic alterations. The main tool for AF diagnosis is the Electrocardiogram (ECG). However, an ECG recorded at a single time point may not detect individuals with paroxysmal AF. In this study, we developed machine learning models for discrimination of prevalent AF using a combination of image-derived radiomics phenotypes and ECG features. Thus, we characterize the phenotypes of prevalent AF in terms of ECG and imaging alterations. Moreover, we explore sex-differential remodelling by building sex-specific models. Our integrative model including radiomics and ECG together resulted in a better performance than ECG alone, particularly in women. ECG had a lower performance in women than men (AUC: 0.77 vs 0.88, p < 0.05) but adding radiomics features, the accuracy of the model was able to improve significantly. The sensitivity also increased considerably in women by adding the radiomics (0.68 vs 0.79, p < 0.05) having a higher detection of AF events. Our findings provide novel insights into AF-related electro-anatomic remodelling and its variations by sex. The integrative radiomics-ECG model also presents a potential novel approach for earlier detection of AF.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2025-03-29 23:58