Reorganization of Parvalbumin Immunopositive Perisomatic Innervation of Principal Cells in Focal Cortical Dysplasia Type IIB in Human Epileptic Patients

Szekeres-Paraczky, Cecília [Szekeres-Paraczky, Cecília Kata (Neurobiológia), author] School of PhD Studies (SU); Institute of Experimental Medicine; Human Brain Research Laboratory; Szocsics, Péter [Szocsics, Péter (idegtudomány), author] School of PhD Studies (SU); Institute of Experimental Medicine; Human Brain Research Laboratory; Erőss, Loránd [Erőss, Loránd (Idegsebészet, ide...), author] Országos Mentális, Ideggyógyászati és Idegsebés...; Institute of Neurology and Neurosurgery (Amerik... (OMIII); Fabó, Dániel [Fabó, Dániel (Neurobiológia), author] Országos Mentális, Ideggyógyászati és Idegsebés...; Institute of Neurology and Neurosurgery (Amerik... (OMIII); Mód, László; Maglóczky, Zsófia ✉ [Maglóczky, Zsófia (Neurobiológia), author] MTA Kísérleti Orvostudományi Kutatóintézet; School of PhD Studies (SU); Human Brain Research Laboratory

English Article (Journal Article) Scientific
Published: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 1661-6596 1422-0067 23 (9) Paper: 4746 , 19 p. 2022
  • SJR Scopus - Inorganic Chemistry: D1
Identifiers
Fundings:
  • NKFI(K 125436)
  • National Brain Research Program(2017-1.2.1-NKP-2017-00002)
Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. As several studies have revealed, the abnormal functioning of the perisomatic inhibitory system may play a role in the onset of seizures. Therefore, we wanted to investigate whether changes of perisomatic inhibitory inputs are present in FCD. Thus, the input properties of abnormal giant- and control-like principal cells were examined in FCD type IIB patients. Surgical samples were compared to controls from the same cortical regions with short postmortem intervals. For the study, six subjects were selected/each group. The perisomatic inhibitory terminals were quantified in parvalbumin and neuronal nuclei double immunostained sections using a confocal fluorescent microscope. The perisomatic input of giant neurons was extremely abundant, whereas control-like cells of the same samples had sparse inputs. A comparison of pooled data shows that the number of parvalbumin-immunopositive perisomatic terminals contacting principal cells was significantly larger in epileptic cases. The analysis showed some heterogeneity among epileptic samples. However, five out of six cases had significantly increased perisomatic input. Parameters of the control cells were homogenous. The reorganization of the perisomatic inhibitory system may increase the probability of seizure activity and might be a general mechanism of abnormal network activity.
Citation styles: IEEEACMAPAChicagoHarvardCSLCopyPrint
2025-04-02 02:24