Manifold-adaptive dimension estimation revisited

Benko, Zs ✉ [Benkő, Zsigmond (idegtudomány), szerző] Elméleti idegtudomány és komplex rendszerek kut... (RMI / KTO); Doktori Iskola (SE); Stippinger, M [Stippinger, Marcell (fizika), szerző] Elméleti idegtudomány és komplex rendszerek kut... (RMI / KTO); Rehus, R; Bencze, A [Bencze, Attila István (plazmafizika), szerző] Kísérleti Plazmafizikai Kutatócsoport (RMI / PO); Fabó, D [Fabó, Dániel (Neurobiológia), szerző] Országos Klinikai Idegtudományi Intézet; Hajnal, B [Hajnal, Boglárka Zsófia (orvostudomány), szerző] Doktori Iskola (SE); Országos Klinikai Idegtudományi Intézet; Eröss, LG [Erőss, Loránd (Idegsebészet, ide...), szerző] Információs Technológiai és Bionikai Kar (PPKE); Országos Klinikai Idegtudományi Intézet; Amerikai úti Ideggyógyászati és Idegsebészeti I... (OMIII); Telcs, A [Telcs, András (matematika), szerző] Számítástudományi és Információelméleti Tanszék (BME / VIK); Kvantitatív Módszerek Intézeti Tanszék (PE / GTK / MI); Elméleti idegtudomány és komplex rendszerek kut... (RMI / KTO); Somogyvári, Z [Somogyvári, Zoltán (Elméleti idegtudo...), szerző] Elméleti idegtudomány és komplex rendszerek kut... (RMI / KTO)

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: PEERJ COMPUTER SCIENCE 2376-5992 2376-5992 8 Paper: e790 , 30 p. 2022
  • SJR Scopus - Computer Science (miscellaneous): Q2
Azonosítók
Támogatások:
  • Tématerületi Kiválósági Program(BME NC TKP2020)
  • (BME FIKP-MI/SC)
  • National Brain Research Program of Hungary(KTIA_NAP_12-2-201)
  • Hungarian Brain Research Program(2017-1.2.1-NKP-2017-00002) Támogató: NKFIH
  • (OTKA (K135837)) Támogató: OTKA
  • (OTKA (NN118902)) Támogató: OTKA
  • (TKP2020-NKA-10)
Szakterületek:
  • Természettudományok
Data dimensionality informs us about data complexity and sets limit on the structure of successful signal processing pipelines. In this work we revisit and improve the manifold adaptive Farahmand-Szepesvári-Audibert (FSA) dimension estimator, making it one of the best nearest neighbor-based dimension estimators available. We compute the probability density function of local FSA estimates, if the local manifold density is uniform. Based on the probability density function, we propose to use the median of local estimates as a basic global measure of intrinsic dimensionality, and we demonstrate the advantages of this asymptotically unbiased estimator over the previously proposed statistics: the mode and the mean. Additionally, from the probability density function, we derive the maximum likelihood formula for global intrinsic dimensionality, if i.i.d. holds. We tackle edge and finite-sample effects with an exponential correction formula, calibrated on hypercube datasets. We compare the performance of the corrected median-FSA estimator with kNN estimators: maximum likelihood (Levina-Bickel), the 2NN and two implementations of DANCo (R and MATLAB). We show that corrected median-FSA estimator beats the maximum likelihood estimator and it is on equal footing with DANCo for standard synthetic benchmarks according to mean percentage error and error rate metrics. With the median-FSA algorithm, we reveal diverse changes in the neural dynamics while resting state and during epileptic seizures. We identify brain areas with lower-dimensional dynamics that are possible causal sources and candidates for being seizure onset zones.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2025-04-05 03:42