mtmt
Magyar Tudományos Művek Tára
XML
JSON
Átlépés a keresőbe
In English
Computational Phosphorylation Network Reconstruction: An Update on Methods and Resources
Zhang, M.
;
Duan, G. ✉
Angol nyelvű Könyvfejezet (Könyvrészlet) Tudományos
Megjelent:
Jose M. Segui-Simarro. Doubled Haploid Technology. (2021) ISBN:9781071613146; 9781071613153
pp. 203-219
Azonosítók
MTMT: 32181893
DOI:
10.1007/978-1-0716-1625-3_15
WoS:
000680079100016
Most proteins undergo some form of modification after translation, and phosphorylation is one of the most relevant and ubiquitous post-translational modifications. The succession of protein phosphorylation and dephosphorylation catalyzed by protein kinase and phosphatase, respectively, constitutes a key mechanism of molecular information flow in cellular systems. The protein interactions of kinases, phosphatases, and their regulatory subunits and substrates are the main part of phosphorylation networks. To elucidate the landscape of phosphorylation events has been a central goal pursued by both experimental and computational approaches. Substrate specificity (e.g., sequence, structure) or the phosphoproteome has been utilized in an array of different statistical learning methods to infer phosphorylation networks. In this chapter, different computational phosphorylation network inference-related methods and resources are summarized and discussed. © 2021, Springer Science+Business Media, LLC, part of Springer Nature.
Idézett közlemények (1)
Hivatkozás stílusok:
IEEE
ACM
APA
Chicago
Harvard
CSL
Másolás
Nyomtatás
2025-04-24 22:09
×
Lista exportálása irodalomjegyzékként
Hivatkozás stílusok:
IEEE
ACM
APA
Chicago
Harvard
Nyomtatás
Másolás