Functional and structural adaptations of the coronary macro- and microvasculature to regular aerobic exercise by activation of physiological, cellular, and molecular mechanisms

Koller, Akos ✉ [Koller, Ákos (Szív és vérkeringés), szerző] Transzlációs Medicina Intézet (SE / AOK / I); Sport- és Egészségtudományi Intézet (MTSE); Laughlin, M Harold; Cenko, Edina; de Wit, Cor; Tóth, Kálmán [Tóth, Kálmán (Cardiologia-haemo...), szerző] I.sz. Belgyógyászati Klinika (PTE / ÁOK); Bugiardini, Raffaele; Trifunovits, Danijela; Vavlukis, Marija; Manfrini, Olivia; Lelbach, Adam [Lelbach, Ádám Antal (Belgyógyászat, ga...), szerző] Belgyógyászati és Onkológiai Klinika - Geriátri... (SE / AOK / K / ISZBOK); Dornyei, Gabriella [Bednárikné Dörnyei, Gabriella (Érfiziológia), szerző] Morfológiai és Fiziológiai Tanszék (SE / ETK2007); Padro, Teresa; Badimon, Lina; Tousoulis, Dimitris; Gielen, Stephan; Duncker, Dirk J

Angol nyelvű Összefoglaló cikk (Folyóiratcikk) Tudományos
Megjelent: CARDIOVASCULAR RESEARCH 0008-6363 1755-3245 118 (2) pp. 357-371 2022
  • SJR Scopus - Cardiology and Cardiovascular Medicine: D1
Azonosítók
Támogatások:
  • (NKFIH-1281-2/2020)
  • (TKP2020-NKA-17)
  • (K108444)
  • (K116954) Támogató: Hungarian National Research, Development and Innovation Office
  • (K132596) Támogató: OTKA
Regular aerobic exercise (RAEX) elicits several positive adaptations in all organs and tissues of the body, culminating in improved health and well-being. Indeed, in over half a century, many studies have shown the benefit of RAEX on cardiovascular outcome in terms of morbidity and mortality. RAEX elicits a wide range of functional and structural adaptations in the heart and its coronary circulation, all of which are to maintain optimal myocardial oxygen and nutritional supply during increased demand. Although there is no evidence suggesting that oxidative metabolism is limited by coronary blood flow (CBF) rate in the normal heart even during maximal exercise, increased CBF and capillary exchange capacities have been reported. Adaptations of coronary macro- and microvessels include outward remodeling of epicardial coronary arteries, increased coronary arteriolar size and density, and increased capillary surface area. In addition, there are adjustments in the neural and endothelial regulation of coronary macrovascular tone. Similarly, there are several adaptations at the level of microcirculation, including enhanced smooth muscle dependent pressure-induced myogenic constriction and upregulated endothelium-dependent flow-/shear-stress-induced dilation, increasing the range of diameter change. Alterations in the signaling interaction between coronary vessels and cardiac metabolism have also been described. At the molecular and cellular level, ion channels are key players in the local coronary vascular adaptations to RAEX, with enhanced activation of influx of Ca2+ contributing to the increased myogenic tone (via voltage gated Ca2+ channels) as well as the enhanced endothelium-dependent dilation (via TRPV4 channels). Finally, RAEX elicits a number of beneficial effects on several hemorheological variables that may further improve CBF and myocardial oxygen delivery and nutrient exchange in the microcirculation by stabilizing and extending the range and further optimizing the regulation of myocardial blood flow during exercise. These adaptations also act to prevent and/or delay the development of coronary and cardiac diseases.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2022-09-25 00:52