Networks with degree-degree correlations are special cases of the edge-coloured random graph

Balogh, Samuel G. [Balogh, Gáspár Sámuel (Statisztikus fizi...), szerző] Biológiai Fizika Tanszék (ELTE / TTK / FizCsill_I); Palla, Gergely [Palla, Gergely (Elméleti és matem...), szerző] MTA-ELTE Statisztikus és Biológiai Fizika Kutat... (ELTE / TTK / Fiz_I); Egészségügyi Menedzserképző Központ (SE / EKK); Biológiai Fizika Tanszék (ELTE / TTK / FizCsill_I); Kryven, Ivan ✉

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: JOURNAL OF COMPLEX NETWORKS 2051-1310 2051-1329 8 (4) Paper: cnaa045 , 12 p. 2020
  • SJR Scopus - Applied Mathematics: Q2
Azonosítók
In complex networks, the degrees of adjacent nodes may often appear dependent-which presents a modelling challenge. We present a working framework for studying networks with an arbitrary joint distribution for the degrees of adjacent nodes by showing that such networks are a special case of edge-coloured random graphs. We use this mapping to study bond percolation in networks with assortative mixing and show that, unlike in networks with independent degrees, the sizes of connected components may feature unexpected sensitivity to perturbations in the degree distribution. The results also indicate that degree-degree dependencies may feature a vanishing percolation threshold even when the second moment of the degree distribution is finite. These results may be used to design artificial networks that efficiently withstand link failures and indicate the possibility of super spreading in networks without clearly distinct hubs.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2025-04-11 20:45