Composition and structural features of two Permian parareptile (Deltavjatia vjatkensis,
Kotelnich Site, Russia) bone fragments and their alteration during fossilisation
The Kotelnich vertebrate fossil site, one of the richest of the Permian period, is
characterised by the excellent preservation of fossil remains due to their burial
in a silty anaerobic environment similar to modern peat bogs. The aim of the work
is to carry out a comprehensive study of the composition and structure of bone fragments
of the Permian parareptile Deltavjatia vjatkensis, as well as that of its embedding
rocks, to support further paleoecological and fossilisation reconstructions. Fossil
bones and their surrounding strata were investigated using optical and scanning electron
microscopy, Raman spectroscopy, X-ray diffraction and inductively coupled plasma mass
spectrometry (ICP-MS). The carbonate-rich composition of the sediment was found to
favour the preservation of the bone apatite. The mineral phase of the bone tissue
corresponds to fluorapatite. Organic matrix vibration bands arising on the Raman spectra
correspond to C-H vibrations of lipids and proteins and possibly cholesterol. The
obtained data indicate a high degree of integrity of both bone mineral phase and its
organic proteinaceous residue. White blood cell (WBC)-like structures were detected,
which possibly could be interpreted as leukocytes. Elemental mapping of fossil bones
was used to reveal element distribution features (uniform or with zones of apparent
enrichment-depletion) and secondary mineralisation zones. Ca, P, Mg, Mn and S are
uniformly distributed through the bone; conversely, elevated quantities of Fe are
assigned to cracks and large pores formed as a consequence of the decomposition of
organic materials. As compared to bone apatite, the authigenic calcite filling of
bone porosities is significantly depleted in terms of microelements. The apatite rare
earth element (REE) composition of bone tissue, which is inherited from seawater,
can be used for paleoreconstructions of redox conditions and water composition. La/Sm
ratios (0.4-0.5), high Y/Ho ratios, high uranium content and high La/Yb ratios (2-3)
in the bone apatite indicate the absence of recrystallisation during the late stages
of diagenesis. A positive cerium anomaly detected in the bones indicates the presence
of an oxidising and possibly alkaline environment during the early stages of diagenesis
in shallow coastal basin of the Kotelnich paleolocality. It is shown that 10 to 20%
of REE in bone apatite is derived from seawater absorption (hydrogenous source), with
the remainder having been derived from host rock (lithogenic) sources.