Conditional Lie-Backlund Symmetries and Functionally Generalized Separation of Variables to Quasi-Linear Diffusion Equations with Source

Wang, Rui; Ji, Lina ✉

Angol nyelvű Tudományos Szakcikk (Folyóiratcikk)
Megjelent: SYMMETRY 2073-8994 12 (5) , 13 p. 2020
  • SJR Scopus - Chemistry (miscellaneous): Q2
    The conditional Lie-Backlund symmetry method is applied to investigate the functionally generalized separation of variables for quasi-linear diffusion equations with a source. The equations and the admitted conditional Lie-Backlund symmetries related to invariant subspaces are identified. The exact solutions possessing the form of the functionally generalized separation of variables are constructed for the resulting equations due to the corresponding symmetry reductions.
    Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
    2021-03-03 18:39