A transition to stable one-dimensional swimming enhances E. coli motility through narrow channels

Vizsnyiczai, G. [Vizsnyiczai, Gaszton (Biofizika), szerző] Biofizikai Intézet (HRN SZBK); Frangipane, G.*; Bianchi, S.; Saglimbeni, F.; Dell’Arciprete, D.; Di, Leonardo R. ✉

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: NATURE COMMUNICATIONS 2041-1723 2041-1723 11 (1) Paper: 2340 2020
  • Regionális Tudományok Bizottsága: A nemzetközi
  • SJR Scopus - Biochemistry, Genetics and Molecular Biology (miscellaneous): D1
Azonosítók
Living organisms often display adaptive strategies that allow them to move efficiently even in strong confinement. With one single degree of freedom, the angle of a rotating bundle of flagella, bacteria provide one of the simplest examples of locomotion in the living world. Here we show that a purely physical mechanism, depending on a hydrodynamic stability condition, is responsible for a confinement induced transition between two swimming states in E. coli. While in large channels bacteria always crash onto confining walls, when the cross section falls below a threshold, they leave the walls to move swiftly on a stable swimming trajectory along the channel axis. We investigate this phenomenon for individual cells that are guided through a sequence of micro-fabricated tunnels of decreasing cross section. Our results challenge current theoretical predictions and suggest effective design principles for microrobots by showing that motility based on helical propellers provides a robust swimming strategy for exploring narrow spaces. © 2020, The Author(s).
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2024-12-04 10:38