Structure-function analyses of the G729R 2-oxoadipate dehydrogenase genetic variant associated with L-lysine metabolism disorder

Zhang, Xu; Nemeria, Natalia S* ✉; Leandro, João; Houten, Sander ✉; Lazarus, Michael B; Gerfen, Gary J ✉; Ozohanics, Oliver [Ozohanics, Olivér (Tömegspektrometria), szerző] Orvosi Biokémiai Intézet (SE / AOK / I); Ambrus, Attila [Ambrus, Attila (Biokémia), szerző] Orvosi Biokémiai Intézet (SE / AOK / I); MTA-SE Neurobiokémiai Kutatócsoport (SE / AOK / I / OBI); Nagy, Balint [Nagy, Bálint (szerkezeti biokémia), szerző] Orvosi Biokémiai Intézet (SE / AOK / I); Brukh, Roman; Jordan, Frank

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: JOURNAL OF BIOLOGICAL CHEMISTRY 0021-9258 1083-351X 295 (23) pp. 8078-8095 2020
  • SJR Scopus - Biochemistry: D1
Azonosítók
Szakterületek:
  • Biokémia és molekuláris biológia
  • Biológiai tudományok
2-Oxoadipate dehydrogenase (E1a, also known as DHTKD1, dehydrogenase E1 and transketolase domain-containing protein 1) is a thiamin diphosphate-dependent enzyme and part of the 2-oxoadipate dehydrogenase complex (OADHc) in L-lysine catabolism. Genetic findings have linked mutations in the DHTKD1 gene to several metabolic disorders. These include alpha-aminoadipic and alpha-ketoadipic aciduria (AMOXAD), a rare disorder of L-lysine, L-hydroxylysine, and L-tryptophan catabolism, characterized by clinical presentations such as developmental delay, mild-to-severe intellectual disability, ataxia, epilepsy, and behavioral disorders that cannot be currently managed by available treatments. A heterozygous missense mutation, c.2185G>A (p. G729R), in DHTKD1 has been identified in most AMOXAD cases. Here, we report that the G729R E1a variant when assembled into OADHc in vitro displays a 50-fold decrease in catalytic efficiency for NADH production and significantly reduced rate of glutaryl-CoA production by dihydrolipoamide succinyl-transferase (E2o). However, the G729R E1a substitution did not affect any of the three side-reactions associated solely with G729R E1a, prompting us to determine the structure-function effects of this mutation. A multipronged systematic analysis of the reaction rates in the OADHc pathway, supplemented with results from chemical cross-linking and hydrogen-deuterium exchange MS, revealed that the c.2185G>A DHTKD1 mutation affects E1a-E2o assembly, leading to impaired channeling of OADHc intermediates. Cross-linking between the C-terminal region of both E1a and G729R E1a with the E2o lipoyl and core domains suggested that correct positioning of the C-terminal E1a region is essential for the intermediate channeling. These findings may inform the development of interventions to counter the effects of pathogenic DHTKD1 mutations.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2025-04-02 04:44