Microanalysis of soot particulates using STEM

Bell, DC; Rainey, LC; Palotas, AB [Palotás, Árpád Bence (Tüzeléstechnika), author]; Vandersande, JB

English Scientific Conference paper in journal (Journal Article)
Published: MRS SYMPOSIUM PROCEEDINGS 0272-9172 502 pp. 281-286 1998
Conference: Symposium In Situ Process Diagnostics and Intelligent MaterialsProcessing 1997-12-02 [Boston (MA), United States of America]
    Scanning transmission electron microscopy (STEM) coupled with energy dispersive x-ray analysis (EDX) and electron energy-loss spectroscopy (EELS) has been used to characterize the elemental composition and oxidation conditions of various soot samples. The STEM employed in this investigation was the Vacuum Generators HB603, with a microanalytical resolution approaching 1 nm, that allowed the analysis of individual soot particles and aggregates. The aim of this research is quantification of the EDX spectra which is possible after background and absorption corrections. This information can then be used for comparative studies of different fuels and combustion processes. EELS has been employed to determine the amount of graphitic carbon in a soot particulate, and the detection of trace elements of low atomic number. It has been shown in soot that for Carbon the energy-loss of the p shell electrons increases with the amount of oxidation at high temperatures. Analysis and characterization of gas turbine soot, collected from an engine exhaust duct of a 737-300 aircraft showed an abundance of different elements. Some of these elements originated from the fuel and combustion processes, while other elements were components of the engine itself that combined with the soot particulates during the combustion process. The study showed that soot impurities were found in all discrete sections of aggregates, and that only one or two small soot particulates were necessary to obtain a chemical fingerprint. Other investigations include; coal soot, diesel root at different engine operating conditions and soot produced from wood burning. The richness of the spectra obtained and the ability to quantify results represents an opportunity to accomplish source identification in a novel, powerful way.
    Citation styles: IEEEACMAPAChicagoHarvardCSLCopyPrint
    2022-01-26 15:10