A note on multivariable (phi, Gamma)-modules

Grosse-Kloenne, Elmar ✉

Angol nyelvű Tudományos Szakcikk (Folyóiratcikk)
Megjelent: RESEARCH IN NUMBER THEORY 2363-9555 5 (1) Paper: 6 , 9 p. 2019
  • SJR Scopus - Algebra and Number Theory: Q1
    Let F/Q(p) be a finite field extension, let k be a field of characteristic p. Fix a Lubin Tate group Phi for F and let Gamma(circle) = Gamma x ... x Gamma with Gamma = O-F(x) act on k[[t(1), ... , t(n)]][Pi(i)t(i)(-1)] by letting gamma(i) (in the i-th factor Gamma) act on ti by insertion of ti into the power series attached to gamma(i) by Phi. We show that k[[t(1), ... , t(n)]][Pi(i)t(i)(-1)] admits no non-trivial ideal stable under Gamma(circle), thereby generalizing a result of Zabradi (who had treated the case where Phi is the multiplicative group). We then discuss applications to (phi, Gamma)-modules over k[[t(1), ... , t(n)]][Pi(i)t(i)(-1)].
    Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
    2020-08-13 08:36