Transport signatures of an Andreev molecule in a quantum dot-superconductor-quantum dot setup

Scherubl, Zoltan [Scherübl, Zoltán (fizika), szerző] Fizika Tanszék (BME / TTK / FI); MTA-BME Lendület Nanoelektronika Kutatócsoport (BME / TTK / FI / FT); Palyi, Andras [Pályi, András (Szilárdtestfizika), szerző] Fizika Tanszék (BME / TTK / FI); MTA-BME Lendület Egzotikus Kvantumfázis Kutatóc... (BME / TTK / FI / EFT); Csonka, Szabolcs [Csonka, Szabolcs (Kísérleti szilárd...), szerző] Fizika Tanszék (BME / TTK / FI); MTA-BME Lendület Nanoelektronika Kutatócsoport (BME / TTK / FI / FT)

Angol nyelvű Tudományos Szakcikk (Folyóiratcikk)
Megjelent: BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2190-4286 10 pp. 363-378 2019
  • SJR Scopus - Electrical and Electronic Engineering: Q1
Azonosítók
Szakterületek:
    Hybrid devices combining quantum dots with superconductors are important building blocks of conventional and topological quantum-information experiments. A requirement for the success of such experiments is to understand the various tunneling-induced non-local interaction mechanisms that are present in the devices, namely crossed Andreev reflection, elastic co-tunneling, and direct interdot tunneling. Here, we provide a theoretical study of a simple device that consists of two quantum dots and a superconductor tunnel-coupled to the dots, often called a Cooper-pair splitter. We study the three special cases where one of the three non-local mechanisms dominates, and calculate measurable ground-state properties, as well as the zero-bias and finite-bias differential conductance characterizing electron transport through this device. We describe how each non-local mechanism controls the measurable quantities, and thereby find experimental fingerprints that allow one to identify and quantify the dominant non-local mechanism using experimental data. Finally, we study the triplet blockade effect and the associated negative differential conductance in the Cooper-pair splitter, and show that they can arise regardless of the nature of the dominant non-local coupling mechanism. Our results should facilitate the characterization of hybrid devices, and their optimization for various quantum-information-related experiments and applications.
    Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
    2021-03-09 02:07