Bifurcations of self-similar solutions for reversing interfaces in the slow diffusion equation with strong absorption

Foster, J. M.; Gysbers, P.; King, J. R.; Pelinovsky, D. E.

Angol nyelvű Tudományos Szakcikk (Folyóiratcikk)
Megjelent: NONLINEARITY 0951-7715 1361-6544 31 (10) pp. 4621-4648 2018
  • SJR Scopus - Mathematical Physics: D1
Azonosítók
Szakterületek:
    Bifurcations of self-similar solutions for reversing interfaces are studied in the slow diffusion equation with strong absorption. The self-similar solutions bifurcate from the time-independent solutions for standing interfaces. We show that such bifurcations occur at particular points in parameter space (characterizing the exponents in the diffusion and absorption terms) where the confluent hypergeometric functions satisfying Kummer's differential equation truncate to finite polynomials. A two-scale asymptotic method is employed to obtain the local dependencies of the self-similar reversing interfaces near the bifurcation points. The asymptotic results are shown to be in excellent agreement with numerical approximations of the self-similar solutions.
    Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
    2021-02-25 01:04