A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions

Asbóth, JK [Asbóth, János Károly (Kvantumoptika, na...), szerző] Kvantumoptikai és kvantuminformatikai csoport (SZFI / KKO); Oroszlány, L [Oroszlány, László (Fizika), szerző] Komplex Rendszerek Fizikája Tanszék (ELTE / TTK / FizCsill_I); Pályi, A [Pályi, András (Szilárdtestfizika), szerző] MTA-BME Kondenzált Anyagok Fizikája Kutatócsoport (BME / TTK / FI / FT)

Angol nyelvű Szakkönyv (Könyv) Tudományos
Megjelent: Springer International Publishing, Cham, Svájc, 166 p. 2016
Sorozatok: Lecture Notes in Physics 0075-8450 1616-6361, 919
    Azonosítók
    Szakterületek:
    • Természettudományok
    This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological band insulators in one and two dimensions. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. We use noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the model is introduced first and then its properties are discussed and subsequently generalized. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.
    Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
    2025-06-14 19:13