Stability of a Chain of Phase Oscillators

Sieber, J; Kalmár-Nagy, T [Kalmár-Nagy, Tamás (Áramlástan, Elmél...), szerző] Áramlástan Tanszék (BME / GPK)

Angol nyelvű Tudományos Szakcikk (Folyóiratcikk)
  • SJR Scopus - Condensed Matter Physics: Q1
    Abstract We study a chain of N+1 phase oscillators with asymmetric but uniform coupling. This type of chain possesses 2N ways to synchronize in so-called traveling wave states, i.e., states where the phases of the single oscillators are in relative equilibrium. We show that the number of unstable dimensions of a traveling wave equals the number of oscillators with relative phase close to π. This implies that only the relative equilibrium corresponding to approximate in-phase synchronization is locally stable. Despite the presence of a Lyapunov-type functional, periodic or chaotic phase slipping occurs. For chains of lengths 3 and 4 we locate the region in parameter space where rotations (corresponding to phase slipping) are present.
    Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
    2021-10-26 07:32