Self-assembly of N3-substituted xanthines in the solid state and at a solid-liquid interface

Artur, Ciesielski; Sebastien, Haar; Bényei, Attila [Bényei, Attila Csaba (Polimorfia kutatá...), szerző] Fizikai Kémiai Tanszék (DE / TTK / KemI); Paragi, Gábor [Paragi, Gábor (molekulafizika, m...), szerző] MTA-SZTE Szupramolekuláris és Nanoszerkezetű An... (SZTE / ÁOK / OVI); Célia, Fonseca Guerra; F., Matthias Bickelhaupt; Stefano, Masiero; Szolomájer, János [Szolomájer, János (Nukleinsavak), szerző] Orvosi Vegytani Intézet (SZTE / ÁOK); Paolo, Samori; Gian, Piero Spada; Kovács, Lajos [Kovács, Lajos (Nukleinsavak), szerző] Orvosi Vegytani Intézet (SZTE / ÁOK)

Angol nyelvű Tudományos Szakcikk (Folyóiratcikk)
Megjelent: LANGMUIR 0743-7463 1520-5827 29 (24) pp. 7283-7290 2013
  • SJR Scopus - Condensed Matter Physics: D1
    Self-assembly of small molecular modules interacting through non-covalent forces is increasingly being used to generate functional structures and materials for electronic, catalytic, and biomedical applications. The greatest control over the geometry in H-bond supramolecular architectures, especially in H-bonded supramolecular polymers, can be achieved by exploiting the rich programmability of artificial nucleobases undergoing self-assembly through strong H-bonds. Here N3-functionalized xanthine modules are described, which are capable of self-associating through self-complementary H-bonding patterns to form H-bonded supramolecular ribbons. The self-association of xanthines through directional H-bonding between neighboring molecules allows the controlled generation of highly compact 1D supramolecular polymeric ribbons on graphite. These architectures have been characterized by scanning tunneling microscopy at a solid–liquid interface, corroborated by dispersion-corrected density functional theory (DFT) studies and X-ray diffraction.
    Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSL
    2019-09-22 07:59