Glucose-insulin control of Type1 diabetic patients in H2/H∞ space via Computer Algebra

Kovács, Levente [Kovács, Levente (Irányítástechnika), szerző] Irányítástechnika és Informatika Tanszék (BME / VIK); Paláncz, Béla [Paláncz, Béla (Matematikai model...), szerző] Fotogrammetria és Térinformatika Tanszék (BME / ÉMK)

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Konferencia: 2nd International Conference on Algebraic Biology (AB 2007) 2007-07-02 [Hagenberg, Ausztria]
  • X. Földtudományok Osztálya: A
  • SJR Scopus - Computer Science (miscellaneous): Q2
Azonosítók
Szakterületek:
  • Matematika
  • Számítás- és információtudomány
This article presents the H2/Hinf control (disturbance rejection LQ method) of the Bergman minimal model [1] for Type1 diabetic patients under intensive care using computer algebra. To design the optimal controller, the disturbance rejection LQ method based on the minimax differential game is applied. The critical, minimax value of the scaling parameter gamma_crit is determined by using the Modified Riccati Control Algebraic (MCARE) equation employing reduced Groebner basis solution on rational field. The numerical results are in good agreement with those of the Control Toolbox of MATLAB. It turned out, that in order to get positive definite solution stabilizing the closed loop, should be greater than gamma_crit. The obtained results are compared with the classical LQ technique on the original non-linear system, using a standard meal disturbance situation. It is also demonstrated that for gamma >> gamma_crit, the gain matrix approaches the traditional LQ optimal control design solution. The symbolic and numerical computations were carried out with Mathematica 5.2, and with the CSPS Application 2, as well as with MATLAB 6.5.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2023-06-03 11:05