On the robustness of stable turning processes

Dombovari, Zoltan [Dombóvári, Zoltán (Műszaki mechanika), szerző] Műszaki Mechanikai Tanszék (BME / GPK); Wilson, R. Eddie; Stepan, Gabor [Stépán, Gábor (mechanika), szerző] Műszaki Mechanikai Tanszék (BME / GPK)

Angol nyelvű Tudományos Szakcikk (Folyóiratcikk)
  • SJR Scopus - Industrial and Manufacturing Engineering: Q2
    Self-excited non-linear vibrations occurring in the machining \nprocesses are investigated in this paper. Our treatment applies \nanalytical techniques to a one Degree of Freedom (DOF) but \nstrongly non-linear mechanical model of the turning process. \nThis tool enables us to describe and analyse the highly non- \nlinear dynamics of the appearing periodic motions. Using normal \nform calculations for the Delay-Differential Equation (DDE) \nmodel, we prove that the low-amplitude vibrations are unstable \nall along the stability lobes due to the subcriticality of Hopf \nbifurcations. This means that self-excited vibrations of the \nmachine tool may occur below the stability boundaries predicted \nby the linear theory. Consequently, stable stationary cutting \nmay not be robust enough for external perturbations close to the \nlinear stability limits determined during the parameter \noptimisation of turning processes. Robustness is characterised \nby the amplitude of unstable oscillations along the stability \nlobes for non-linear cutting force characteristics having \nessential inflection points against chip thickness.
    Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
    2022-01-20 11:22