Investigation of pellet-driven magnetic perturbations in different tokamak scenarios

Mayer, M; Andrzejczuk, M; Dux, R; Fortuna-Zalesna, E; Hakola, A; Koivuranta, S; Krieger, K; Kurzydlowski, KJ; Likonen, J; Matern, G; Neu, R; Ramos, G; Rasinski, M; Rohde, V; Sugiyama, K; Wiltner, A; Zielinski, W; Kallenbach, A; Adamek, J; Aho-Mantila, L; Äkäslompolo, S; Angioni, C; Atanasiu, C V; Balden, M; Behler, K; Belonohy, E; Bergmann, A; Bernert, M; Bilato, R; Bobkov, V; Boom, J; Bottino, A; Braun, F; Brüdgam, M; Buhler, A; Burckhart, A; Chankin, A; Classen, I G J; Conway, G D; Coster, D P; de Marné, P; D'Inca, R; Drube, R; Dux, R; Eich, T; Endstrasser, N; Engelhardt, K; Esposito, B; Fable, E; Fahrbach, H -U; Fattorini, L; Fischer, R; Flaws, A; Fünfgelder, H; Fuchs, J C; Gál, K; García, Muñoz M; Geiger, B; Gemisic, Adamov M; Giannone, L; Giroud, C; Görler, T; da Graca, S; Greuner, H; Gruber, O; Gude, A; Günter, S; Haas, G; Hakola, A H; Hangan, D; Happel, T; Hauff, T; Heinemann, B; Herrmann, A; Hicks, N; Hobirk, J; Höhnle, H; Hölzl, M; Hopf, C; Horton, L; Huart, M; Igochine, V; Ionita, C; Janzer, A; Jenko, F; Käsemann, C -P; Kálvin, S; Kardaun, O; Kaufmann, M; Kirk, A; Klingshirn, H -J; Kocan, M; Kocsis, G; Kollotzek, H; Konz, C; Koslowski, R; Krieger, K; Kurki-Suonio, T; Kurzan, B; Lackner, K; Lang, P T; Lauber, P; Laux, M; Leipold, Frank; Leuterer, F; Lohs, A; Luhmann, N C Jr; Lunt, T; Lyssoivan, A; Maier, H; Maggi, C; Mank, K; Manso, M -E; Maraschek, M; Martin, P; Mayer, M; McCarthy, P J; McDermott, R; Meister, H; Menchero, L; Meo, Fernando; Merkel, P; Merkel, R; Mertens, V; Merz, F; Mlynek, A; Monaco, F; Müller, H W; Münich, M; Murmann, H; Neu, G; Neu, R; Nold, B; Noterdaeme, J -M; Park, H K; Pautasso, G; Pereverzev, G; Podoba, Y; Pompon, F; Poli, E; Polochiy, K; Potzel, S; Prechtl, M; Püschel, M J; Pütterich, T; Rathgeber, S K; Raupp, G; Reich, M; Reiter, B; Ribeiro, T; Riedl, R; Rohde, V; Roth, J; Rott, M; Ryter, F; Sandmann, W; Santos, J; Sassenberg, K; Sauter, P; Scarabosio, A; Schall, G; Schmid, K; Schneider, P A; Schneider, W; Schramm, G; Schrittwieser, R; Schweinzer, J; Scott, B; Sempf, M; Serra, F; Sertoli, M; Siccinio, M; Sigalov, A; Silva, A; Sips, A C C; Sommer, F; Stäbler, A; Stober, J; Streibl, B; Strumberger, E; Sugiyama, K; Suttrop, W; Szepesi, T; Tardini, G; Tichmann, C; Told, D; Treutterer, W; Urso, L; Varela, P; Vincente, J; Vianello, N; Vierle, T; Viezzer, E; Vorpahl, C; Wagner, D; Weller, A; Wenninger, R; Wieland, B; Wigger, C; Willensdorfer, M; Wischmeier, M; Wolfrum, E; Würsching, E; Yadikin, D; Yu, Q; Zammuto, I; Zasche, D; Zehetbauer, T; Zhang, Y; Zilker, M; Zohm, HSzepesi T; Kalvin, S; Kocsis, G; Lackner, K; Lang, PT; Maraschek, M; Pokol, G [Pokol, Gergő (Fúziós plazmafizika), szerző] Nukleáris Technikai Intézet (BME / TTK); Por, G [Pór, Gábor (Műszaki diagnosztika), szerző] Nukleáris Technikai Intézet (BME / TTK)

Angol nyelvű Tudományos Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk)
Megjelent: PLASMA PHYSICS AND CONTROLLED FUSION 0741-3335 1361-6587 51 (12) Paper: 125002 , 19 p. 2009
  • SJR Scopus - Condensed Matter Physics: D1
Szakterületek:
    Magnetic perturbations directly driven by pellets were studied in three different plasma scenarios in the ASDEX Upgrade tokamak to gain a deeper insight into the triggering process of type-I ELMs. In the type-I ELMy H-mode, promptly after the ELM, a mode with toroidal mode number n = -6 (the negative sign denoting the ion drift direction) was detected in the 100-150 kHz frequency range, for both spontaneous and triggered ELMs. For triggered ELMs with pellets ablating longer than the ELM crash, this mode was observed for a longer time-therefore this could be identified as the pellet-driven perturbation. However, pellets promptly trigger ELMs after entering the plasma, and the large- amplitude ELM footprint masks the pellet-driven perturbation at the instance of the trigger event, i.e. the pellet-driven mode can only be studied after the ELMin a type-I ELMy H-mode. In L- mode plasmas the pellet was observed to drive broadband Alfven waves, detected in the 80-300 kHz frequency range with a toroidal mode number of n = -6, similar to the mode after type-I ELMs, confirming that the mode seen in the H-mode after ELMs is indeed the pellet-driven perturbation. The magnitude of the pellet-driven perturbation was observed to increase monotonically with pellet penetration, and showed an exponential decay after pellet burn-out. Similarities and differences are discussed for the type-III ELMy H-mode scenario, which resulted in the finding that the pellet only drives and/or triggers modes which can be naturally present in the target plasma. Concerning type-I ELM triggering, the pellet-driven magnetic perturbation is unlikely to be the trigger for ELMs, since the structure of the pellet-driven modes is completely different from that of the observed pre-ELM modes (coherent modes with toroidal mode number n = 3 and 4, similar to Washboard modes) or type-I ELMs themselves (also n = 3 and 4).
    Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
    2020-08-14 17:09