Toth A et al. Lateral instability of stationary spherical reaction balls. (2006) PHYSICAL REVIEW E - STATISTICAL, NONLINEAR AND SOFT MATTER PHYSICS (2001-2015) 1539-3755 1550-2376 2470-0053 2470-0045 74 3, 1160909
Journal Article/Article (Journal Article)/Scientific[1160909]
  1. Rogers MC et al. The heads and tails of buoyant autocatalytic balls. (2012) CHAOS 1054-1500 1089-7682 22 3
    Journal Article[23618899] [Approved]
    Független, Idéző: 23618899, Kapcsolat: 23614889
Kevei P. Generalized n-Paul paradox. (2007) STATISTICS & PROBABILITY LETTERS 0167-7152 1879-2103 77 11 1043-1049, 247754
Journal Article/Article (Journal Article)/Scientific[247754]
  1. Csörgő S et al. Weak laws of large numbers for cooperative gamblers. (2008) PERIODICA MATHEMATICA HUNGARICA 0031-5303 1588-2829 57 1 31-60
    Journal Article/Article (Journal Article)/Scientific[247743] [Validated]
    Független, Idéző: 247743, Kapcsolat: 21254773
Csörgő S et al. Merging asymptotic expansions for cooperative gamblers in generalized St. Petersburg games. (2008) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 121 1-2 119-156, 247744
Journal Article/Article (Journal Article)/Scientific[247744]
  1. Kern Peter et al. DIMENSION RESULTS RELATED TO THE ST. PETERSBURG GAME. (2014) PROBABILITY AND MATHEMATICAL STATISTICS-POLAND 0208-4147 34 1 97-117
    Journal Article/Article (Journal Article)/Scientific[24869260] [Admin approved]
    Független, Idéző: 24869260, Kapcsolat: 24869260
Kevei P et al. Merging of linear combinations to semistable laws. (2009) JOURNAL OF THEORETICAL PROBABILITY 0894-9840 1572-9230 22 3 772-790, 247734
Journal Article/Article (Journal Article)/Scientific[247734]
  1. Ho Dang. Domains of operator semi-attraction of probability measures on Banach spaces. (2014) BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS 0103-0752 28 4 587-611
    Journal Article/Article (Journal Article)/Scientific[24350518] [Admin approved]
    Független, Idéző: 24350518, Kapcsolat: 23676880
  2. Fazekas I. MERGING TO SEMISTABLE PROCESSES. (2012) THEORY OF PROBABILITY AND ITS APPLICATIONS 0040-585X 1095-7219 56 4 621-633
    Journal Article/Article (Journal Article)/Scientific[2385608] [Admin approved]
    Független, Idéző: 2385608, Kapcsolat: 22877946
Kevei P. Merging asymptotic expansions for semistable random variables. (2009) LITHUANIAN MATHEMATICAL JOURNAL 0363-1672 1573-8825 49 1 40-54, 247733
Journal Article/Article (Journal Article)/Scientific[247733]
  1. Phuc Dang Ho. Domains of Operator Semi-Attraction of Probability Measures on Banach Spaces. (2014) BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS 0103-0752
    Journal Article/Article (Journal Article)/Scientific[23676865] [Approved]
    Független, Idéző: 23676865, Kapcsolat: 23676865
  2. Gyula Pap. The accuracy of merging approximation in generalized St. Petersburg games. (2011) JOURNAL OF THEORETICAL PROBABILITY 0894-9840 1572-9230 24 1 240-270
    Journal Article/Article (Journal Article)/Scientific[1434123] [Validated]
    Független, Idéző: 1434123, Kapcsolat: 21243414
L Györfi et al. St. Petersburg portfolio games. (2009) In: Algorithmic Learning Theory pp. 83-96, 1292952
Chapter in Book/Conference paper (Chapter in Book)/Scientific[1292952]
  1. Daniel Alexandre. A Practical Guide to Quantitative Portfolio Trading. (2014)
    Book/Monograph (Book)/Scientific[25506255] [Approved]
    Független, Idéző: 25506255, Kapcsolat: 25506255
  2. Libor Józsefné. Rekurziós eljárások, Monte Carlo módszerek és aszimptotikus eredmények oktatási célú összehasonlító elemzése. (2011)
    Thesis/PhD (Thesis)/Scientific[25498949] [Approved]
    Független, Idéző: 25498949, Kapcsolat: 25506467
  3. Libor Józsefné. Financial and economic aspects of St. Petersburg Paradox. (2011) JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES 0974-875X 0975-5748 3 3 211-220
    Journal Article/Article (Journal Article)/Scientific[2207375] [Admin approved]
    Független, Idéző: 2207375, Kapcsolat: 25506227
Kevei P. A NOTE ON ASYMPTOTICS OF LINEAR COMBINATIONS OF IID RANDOM VARIABLES. (2010) PERIODICA MATHEMATICA HUNGARICA 0031-5303 1588-2829 60 1 25-36, 1425132
Journal Article/Article (Journal Article)/Scientific[1425132]
  1. Khachatryan L et al. Non-linear functionals preserving normal distribution and their asymptotic normality. (2018) ARMENIAN JOURNAL OF MATHEMATICS 1829-1163 10 5 1-20
    Journal Article/Article (Journal Article)/Scientific[27567858] [Validated]
    Független, Idéző: 27567858, Kapcsolat: 27567858
  2. Fatma E A et al. Factors affecting the normality of channel outputs of channelized model observers: an investigation using realistic myocardial perfusion SPECT images. (2016) JOURNAL OF MEDICAL IMAGING 2329-4302 2329-4310 3 1
    Journal Article/Article (Journal Article)/Scientific[25506946] [Approved]
    Független, Idéző: 25506946, Kapcsolat: 25506946
Kevei Péter et al. A note on a maximal Bernstein inequality. (2011) BERNOULLI 1350-7265 17 3 1054-1062, 1670365
Journal Article/Article (Journal Article)/Scientific[1670365]
  1. Cerny Jiri et al. QUENCHED INVARIANCE PRINCIPLES FOR THE MAXIMAL PARTICLE IN BRANCHING RANDOM WALK IN RANDOM ENVIRONMENT AND THE PARABOLIC ANDERSON MODEL. (2020) ANNALS OF PROBABILITY 0091-1798 2168-894X 48 1 94-146
    Journal Article/Article (Journal Article)/Scientific[31457924] [Validated]
    Független, Idéző: 31457924, Kapcsolat: 29185879
  2. Hoffmann-Jorgensen Jorgen. Maximal Inequalities for Dependent Random Variables. (2016) PROGRESS IN PROBABILITY 1050-6977 71 61-104
    Journal Article/Conference paper in journal (Journal Article)/Scientific[26391789] [Admin approved]
    Független, Idéző: 26391789, Kapcsolat: 26391789
  3. Florence Merlevède et al. Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples. (2013) ANNALS OF PROBABILITY 0091-1798 2168-894X 41 2 914-960
    Journal Article/Article (Journal Article)/Scientific[21824461] [Approved]
    Független, Idéző: 21824461, Kapcsolat: 21824461
Ambrus G et al. The diminishing segment process. (2012) STATISTICS & PROBABILITY LETTERS 0167-7152 1879-2103 82 1 191-195, 1829023
Journal Article/Article (Journal Article)/Scientific[1829023]
  1. Paouris Grigoris et al. Random ball-polyhedra and inequalities for intrinsic volumes. (2017) MONATSHEFTE FUR MATHEMATIK 0026-9255 1436-5081 182 3 709-729
    Journal Article/Article (Journal Article)/Scientific[26576177] [Approved]
    Független, Idéző: 26576177, Kapcsolat: 25959893
  2. McKinlay Shaun. From sojourn times and boundary crossings to iterated random functions. (2015)
    Thesis/PhD (Thesis)/Scientific[31172702] [Approved]
    Független, Idéző: 31172702, Kapcsolat: 28800584
  3. Pawel Hitczenko et al. Dirichlet and quasi-Bernoulli laws for perpetuities,. (2014) JOURNAL OF APPLIED PROBABILITY 0021-9002 1475-6072 51 2 400-416
    Journal Article/Article (Journal Article)/Scientific[22880971] [Approved]
    Független, Idéző: 22880971, Kapcsolat: 22880971
Kevei Péter et al. The asymptotic distribution of randomly weighted sums and self-normalized sum. (2012) ELECTRONIC JOURNAL OF PROBABILITY 1083-6489 17 46 1-21, 2143645
Journal Article/Article (Journal Article)/Scientific[2143645]
  1. Englander Janos et al. Impatient Random Walk. (2019) JOURNAL OF THEORETICAL PROBABILITY 0894-9840 1572-9230 32 4 2020-2043
    Journal Article/Article (Journal Article)/Scientific[30984218] [Validated]
    Független, Idéző: 30984218, Kapcsolat: 28512292
  2. Yao Mei et al. The moment of maximum normed randomly weighted sums of martingale differences. (2015) JOURNAL OF INEQUALITIES AND APPLICATIONS 1025-5834 1029-242X
    Journal Article/Article (Journal Article)/Scientific[25429510] [Approved]
    Független, Idéző: 25429510, Kapcsolat: 25429510
Dénes A. Risk of infectious disease outbreaks by imported cases with application to the European Football Championship 2012. (2013) INTERNATIONAL JOURNAL OF STOCHASTIC ANALYSIS 2090-3332 2090-3340 2013, 2140401
Journal Article/Article (Journal Article)/Scientific[2140401]
  1. Xiaofei Yang et al. Inferring disease transmission networks at a metapopulation level. (2014) HEALTH INFORMATION SCIENCE AND SYSTEMS 2047-2501 2 8
    Journal Article/Article (Journal Article)/Scientific[25506978] [Approved]
    Független, Idéző: 25506978, Kapcsolat: 25506978
Kevei Péter et al. Randomly weighted self-normalized Lévy processes. (2013) STOCHASTIC PROCESSES AND THEIR APPLICATIONS 0304-4149 123 2 490-522, 2143647
Journal Article/Article (Journal Article)/Scientific[2143647]
  1. Buchmann B et al. Distributional representations and dominance of a Levy process over its maximal jump processes. (2016) BERNOULLI 1350-7265 22 4 2325-2371
    Journal Article/Article (Journal Article)/Scientific[26120286] [Approved]
    Független, Idéző: 26120286, Kapcsolat: 25959927
Péter Kevei et al. A More General Maximal Bernstein-type Inequality. (2013) In: High Dimensional Probability VI pp. 55-62, 2385247
Chapter in Book/Conference paper (Chapter in Book)/Scientific[2385247]
  1. Jørgen Hoffmann-Jørgensen. Maximal inequalities for dependent random variables. (2016) In: High Dimensional Probability VII
    Chapter in Book/Conference paper (Chapter in Book)/Scientific[25959959] [Approved]
    Független, Idéző: 25959959, Kapcsolat: 25959959
F Fodor et al. On random disc polygons in smooth convex discs. (2014) ADVANCES IN APPLIED PROBABILITY 0001-8678 46 4 899-918, 2795477
Journal Article/Article (Journal Article)/Scientific[2795477]
  1. Martini Horst et al. Bodies of Constant Width. (2019) ISBN:9783030038663; 9783030038687
    Book/Monograph (Book)/Scientific[30612185] [Approved]
    Független, Idéző: 30612185, Kapcsolat: 28092490
  2. Paouris Grigoris et al. Random ball-polyhedra and inequalities for intrinsic volumes. (2017) MONATSHEFTE FUR MATHEMATIK 0026-9255 1436-5081 182 3 709-729
    Journal Article/Article (Journal Article)/Scientific[26576177] [Approved]
    Független, Idéző: 26576177, Kapcsolat: 26057918
Kevei Péter et al. The limit distribution of ratios of jumps and sums of jumps of subordinators. (2014) ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS 1980-0436 11 2 631-642, 2810703
Journal Article/Article (Journal Article)/Scientific[2810703]
  1. Ipsen Yuguang et al. Trimmed Levy processes and their extremal components. (2020) STOCHASTIC PROCESSES AND THEIR APPLICATIONS 0304-4149 130 4 2228-+
    Journal Article/Article (Journal Article)/Scientific[31486490] [Validated]
    Független, Idéző: 31486490, Kapcsolat: 29233155
  2. Maller Ross et al. Small time convergence of subordinators with regularly or slowly varying canonical measure. (2019) STOCHASTIC PROCESSES AND THEIR APPLICATIONS 0304-4149 129 10 4144-4162
    Journal Article/Article (Journal Article)/Scientific[30987767] [Validated]
    Független, Idéző: 30987767, Kapcsolat: 28518452
  3. Ipsen Yuguang et al. Ratios of ordered points of point processes with regularly varying intensity measures. (2019) STOCHASTIC PROCESSES AND THEIR APPLICATIONS 0304-4149 129 1 205-222
    Journal Article/Article (Journal Article)/Scientific[30539493] [Validated]
    Független, Idéző: 30539493, Kapcsolat: 27992469
  4. Jasinski Krzysztof. Limiting behavior of the ratio of kth records. (2019) STATISTICS & PROBABILITY LETTERS 0167-7152 1879-2103 150 29-34
    Journal Article/Article (Journal Article)/Scientific[30987768] [Validated]
    Független, Idéző: 30987768, Kapcsolat: 28518453
Gábor Fukker et al. Asymptotic behavior of the generalized St. Petersburg sum conditioned on its maximum. (2016) BERNOULLI 1350-7265 22 2 1026-1054, 2991698
Journal Article/Article (Journal Article)/Scientific[2991698]
  1. Blanchet Jose et al. On distributionally robust extreme value analysis. (2020) EXTREMES 1386-1999 1572-915X 23 2 317-347
    Journal Article/Article (Journal Article)/Scientific[31442910] [Validated]
    Független, Idéző: 31442910, Kapcsolat: 29227397
  2. Boris Buchmann et al. Distributional representations and dominance of a Lévy process over its maximal jump processes. (2016) BERNOULLI 1350-7265 22 4 2325-2371
    Journal Article/Article (Journal Article)/Scientific[25506689] [Approved]
    Független, Idéző: 25506689, Kapcsolat: 25506689
Kevei Péter. A note on the Kesten–Grincevičius–Goldie theorem. (2016) ELECTRONIC COMMUNICATIONS IN PROBABILITY 1083-589X 21, 3096519
Journal Article/Article (Journal Article)/Scientific[3096519]
  1. Damek Ewa et al. Stochastic recursions: Between Kesten's and Grincevicius-Grey's assumptions. (2020) STOCHASTIC PROCESSES AND THEIR APPLICATIONS 0304-4149 130 3 1792-1819
    Journal Article/Article (Journal Article)/Scientific[31489342] [Validated]
    Független, Idéző: 31489342, Kapcsolat: 29238343
  2. Kolodziejek Bartosz. ON PERPETUITIES WITH LIGHT TAILS. (2018) ADVANCES IN APPLIED PROBABILITY 0001-8678 50 4 1119-1154
    Journal Article/Article (Journal Article)/Scientific[30547021] [Validated]
    Független, Idéző: 30547021, Kapcsolat: 28002525
  3. Buraczewski Dariusz et al. ON PERPETUITIES WITH GAMMA-LIKE TAILS. (2018) JOURNAL OF APPLIED PROBABILITY 0021-9002 1475-6072 55 2 368-389
    Journal Article/Article (Journal Article)/Scientific[27611356] [Validated]
    Független, Idéző: 27611356, Kapcsolat: 27611356
  4. Ewa Damek et al. Iterated random functions and regularly varying tails. (2018) JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 1023-6198 1563-5120 24
    Journal Article/Article (Journal Article)/Scientific[27636282] [Validated]
    Független, Idéző: 27636282, Kapcsolat: 27636282
  5. Damek Ewa et al. A renewal theorem and supremum of a perturbed random walk. (2018) ELECTRONIC COMMUNICATIONS IN PROBABILITY 1083-589X 23
    Journal Article/Article (Journal Article)/Scientific[30547022] [Validated]
    Független, Idéző: 30547022, Kapcsolat: 28002526
  6. Damek E et al. Affine stochastic equation with triangular matrices. (2018) JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 1023-6198 1563-5120 24 4 520-542
    Journal Article/Article (Journal Article)/Scientific[27270923] [Validated]
    Független, Idéző: 27270923, Kapcsolat: 27249838
  7. Alexander Iksanov. Renewal theory for perturbed random walks and similar processes. (2016)
    Book/Monograph (Book)/Scientific[26385689] [Approved]
    Független, Idéző: 26385689, Kapcsolat: 26385689
  8. Qi He Tang et al. Random Difference Equations with Subexponential Innovations. (2016) SCIENCE CHINA MATHEMATICS 1674-7283 1869-1862 59 12 2411-2426
    Journal Article/Article (Journal Article)/Scientific[26385761] [Approved]
    Független, Idéző: 26385761, Kapcsolat: 26385761
  9. Dariusz Buraczewski et al. A simple proof of heavy tail estimates for affine type Lipschitz recursions. (2016) STOCHASTIC PROCESSES AND THEIR APPLICATIONS 0304-4149 126
    Journal Article/Article (Journal Article)/Scientific[25964508] [Approved]
    Független, Idéző: 25964508, Kapcsolat: 25964508
Berkes István et al. Tail Probabilities of St. Petersburg Sums, Trimmed Sums, and Their Limit. (2017) JOURNAL OF THEORETICAL PROBABILITY 0894-9840 1572-9230 30 3 1104-1129, 3036993
Journal Article/Article (Journal Article)/Scientific[3036993]
  1. Michael Grabchak. A random variable that does not belong to a domain of attraction, but its absolute value does. (2018) MATHEMATICAL SCIENTIST 0312-3685 1475-6080 43 1 56-59
    Journal Article/Article (Journal Article)/Scientific[27636216] [Approved]
    Független, Idéző: 27636216, Kapcsolat: 27636216
  2. Grabchak M.. A random variable that does not belong to a domain of attraction, but its absolute value does. (2018) MATHEMATICAL SCIENTIST 0312-3685 1475-6080 43 1 56-59
    Journal Article/Article (Journal Article)/Scientific[30373318] [Approved]
    Független, Idéző: 30373318, Kapcsolat: 27781638
  3. Gut Allan et al. AN ASYMMETRIC ST. PETERSBURG GAME WITH TRIMMING. (2018) ADVANCES IN APPLIED PROBABILITY 0001-8678 50 A 115-129
    Journal Article/Article (Journal Article)/Scientific[30465780] [Validated]
    Független, Idéző: 30465780, Kapcsolat: 27939717
  4. Toshio Nakata. A note on the asymptotics of the maxima for the St. Petersburg game. (2017) STATISTICS & PROBABILITY LETTERS 0167-7152 1879-2103 129 284-287
    Journal Article/Article (Journal Article)/Scientific[27636227] [Approved]
    Független, Idéző: 27636227, Kapcsolat: 27636227
  5. Nakata T. A note on the asymptotics of the maxima for the St. Petersburg game. (2017) STATISTICS & PROBABILITY LETTERS 0167-7152 1879-2103 129 284-287
    Journal Article/Scientific[26872264] [Approved]
    Független, Idéző: 26872264, Kapcsolat: 27781639
Kevei Péter. Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes. (2017) ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS 0020-3157 1572-9052 69 467-487, 3190269
Journal Article/Article (Journal Article)/Scientific[3190269]
  1. Fred Espen Benth et al. Cointegration in continuous time for factor models. (2018) MATHEMATICS AND FINANCIAL ECONOMICS 1862-9679 1862-9660 13 1-28
    Journal Article/Article (Journal Article)/Scientific[27636156] [Approved]
    Független, Idéző: 27636156, Kapcsolat: 27636156
Kevei Péter. Implicit renewal theory in the arithmetic case. (2017) JOURNAL OF APPLIED PROBABILITY 0021-9002 1475-6072 54 3 732-749, 3302150
Journal Article/Article (Journal Article)/Scientific[3302150]
  1. Havret Benjamin. Regular Expansion for the Characteristic Exponent of a Product of 2 x 2 Random Matrices. (2019) MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY 1385-0172 1572-9656 22 2
    Journal Article/Article (Journal Article)/Scientific[30997052] [Validated]
    Független, Idéző: 30997052, Kapcsolat: 28531064
  2. Caravenna Francesco et al. Local large deviations and the strong renewal theorem. (2019) ELECTRONIC JOURNAL OF PROBABILITY 1083-6489 24 1-48
    Journal Article/Article (Journal Article)/Scientific[30997051] [Validated]
    Független, Idéző: 30997051, Kapcsolat: 28531063
  3. Buraczewski Dariusz et al. ON PERPETUITIES WITH GAMMA-LIKE TAILS. (2018) JOURNAL OF APPLIED PROBABILITY 0021-9002 1475-6072 55 2 368-389
    Journal Article/Article (Journal Article)/Scientific[27611356] [Validated]
    Független, Idéző: 27611356, Kapcsolat: 27606860
Kevei Péter. Ergodic properties of generalized Ornstein-Uhlenbeck processes. (2018) STOCHASTIC PROCESSES AND THEIR APPLICATIONS 0304-4149 128 1 156-181, 3302151
Journal Article/Article (Journal Article)/Scientific[3302151]
  1. Barrera Gerardo et al. Cut-off phenomenon for Ornstein-Uhlenbeck processes driven by Levy processes. (2020) ELECTRONIC JOURNAL OF PROBABILITY 1083-6489 25
    Journal Article/Article (Journal Article)/Scientific[31493684] [Validated]
    Független, Idéző: 31493684, Kapcsolat: 29247242
  2. Arapostathis Ari et al. ERGODICITY OF A LEVY-DRIVEN SDE ARISING FROM MULTICLASS MANY-SERVER QUEUES. (2019) ANNALS OF APPLIED PROBABILITY 1050-5164 29 2 1070-1126
    Journal Article/Article (Journal Article)/Scientific[30997054] [Validated]
    Független, Idéző: 30997054, Kapcsolat: 28531066
  3. Bertoin Jean. Ergodic aspects of some Ornstein-Uhlenbeck type processes related to Levy processes. (2019) STOCHASTIC PROCESSES AND THEIR APPLICATIONS 0304-4149 129 4 1443-1454
    Journal Article/Article (Journal Article)/Scientific[30997053] [Validated]
    Független, Idéző: 30997053, Kapcsolat: 28531065
2020-09-19 12:06