Sebestyén Z. Biorthogonal expansions for symmetrizable operators. (2011) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 131 1-2 35-45, 2007251
Journal Article/Article (Journal Article)/Scientific[2007251]
  1. Fang Xiaochun et al. On majorization and range inclusion of operators on Hilbert-modules. (2018) LINEAR AND MULTILINEAR ALGEBRA 0308-1087 1563-5139 1-8
    Journal Article/Scientific[27207411] [Approved]
    Független, Idéző: 27207411, Kapcsolat: 27207411
  2. Fang Xiaochun et al. On majorization and range inclusion of operators on Hilbert C*-modules. (2018) LINEAR AND MULTILINEAR ALGEBRA 0308-1087 1563-5139 66 12 2493-2500
    Journal Article/Article (Journal Article)/Scientific[30543914] [Validated]
    Független, Idéző: 30543914, Kapcsolat: 27998659
Sebestyén Z et al. T∗T always has a positive selfadjoint extension. (2012) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 135 1-2 116-129, 2433949
Journal Article/Article (Journal Article)/Scientific[2433949]
  1. Sandovici Adrian. Self-adjointness and skew-adjointness criteria involving powers of linear relations. (2019) JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 0022-247X 1096-0813 470 1 186-200
    Journal Article/Article (Journal Article)/Scientific[30440374] [Validated]
    Független, Idéző: 30440374, Kapcsolat: 27868084
  2. Gesztesy Fritz et al. On a theorem of Z. Sebestyen and Zs. Tarcsay. (2019) ACTA SCIENTIARUM MATHEMATICARUM - SZEGED 0001-6969 85 1-2 291-293
    Journal Article/Article (Journal Article)/Scientific[31096291] [Validated]
    Független, Idéző: 31096291, Kapcsolat: 28694933
  3. Hassi Seppo et al. FACTORIZED SECTORIAL RELATIONS, THEIR MAXIMAL-SECTORIAL EXTENSIONS, AND FORM SUMS. (2019) BANACH JOURNAL OF MATHEMATICAL ANALYSIS 1735-8787 13 3 538-564
    Journal Article/Article (Journal Article)/Scientific[31093434] [Validated]
    Független, Idéző: 31093434, Kapcsolat: 28694934
  4. Seppo Hassi et al. A class of sectorial relations and the associated closed forms. (2019)
    Miscellaneous/Publication in repository (Miscellaneous)/Scientific[31329167] [Approved]
    Független, Idéző: 31329167, Kapcsolat: 29014992
  5. Sandovici Adrian. Von Neumann's theorem for linear relations. (2018) LINEAR AND MULTILINEAR ALGEBRA 0308-1087 1563-5139 66 9 1750-1756
    Journal Article/Article (Journal Article)/Scientific[27565733] [Validated]
    Független, Idéző: 27565733, Kapcsolat: 27565084
  6. Gesztesy Fritz et al. Some Remarks on the Operator T^* T. (2018)
    Miscellaneous/Scientific[27207408] [Approved]
    Független, Idéző: 27207408, Kapcsolat: 27868054
  7. Sandovici A.. A range matrix-type criterion for the self-adjointness of symmetric linear relations. (2018) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 p. 1
    Journal Article/Article (Journal Article)/Scientific[30440389] [Validated]
    Független, Idéző: 30440389, Kapcsolat: 27868097
  8. Sandovici Adrian. Von Neumann’s theorem for linear relations. (2017) LINEAR AND MULTILINEAR ALGEBRA 0308-1087 1563-5139 2017 1-7
    Journal Article/Article (Journal Article)/Scientific[27207403] [Approved]
    Független, Idéző: 27207403, Kapcsolat: 27207337
  9. Hassi S et al. Extremal maximal sectorial extensions of sectorial relations. (2017) INDAGATIONES MATHEMATICAE-NEW SERIES 0019-3577 1872-6100 28 5 1019-1055
    Journal Article/Article (Journal Article)/Scientific[27080636] [Approved]
    Független, Idéző: 27080636, Kapcsolat: 27080636
  10. Hassi Seppo. Factorization, majorization, and domination for linear relations. (2014)
    Miscellaneous/Scientific[24777434] [Approved]
    Független, Idéző: 24777434, Kapcsolat: 24777434
Tarcsay Zs. Operator extensions with closed range. (2012) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 135 4 325-341, 2433953
Journal Article/Article (Journal Article)/Scientific[2433953]
  1. Sandovici Adrian. On the Adjoint of Linear Relations in Hilbert Spaces. (2020) MEDITERRANEAN JOURNAL OF MATHEMATICS 1660-5446 17 2
    Journal Article/Article (Journal Article)/Scientific[31325292] [Approved]
    Független, Idéző: 31325292, Kapcsolat: 29014996
Sebestyen Z et al. CHARACTERIZATIONS OF SELFADJOINT OPERATORS. (2013) STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA 0081-6906 1588-2896 50 4 423-435, 2541922
Journal Article/Article (Journal Article)/Scientific[2541922]
  1. Sandovici Adrian. On the Adjoint of Linear Relations in Hilbert Spaces. (2020) MEDITERRANEAN JOURNAL OF MATHEMATICS 1660-5446 17 2
    Journal Article/Article (Journal Article)/Scientific[31325292] [Approved]
    Független, Idéző: 31325292, Kapcsolat: 29014972
  2. Sandovici Adrian. Self-adjointness and skew-adjointness criteria involving powers of linear relations. (2019) JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 0022-247X 1096-0813 470 1 186-200
    Journal Article/Article (Journal Article)/Scientific[30440374] [Validated]
    Független, Idéző: 30440374, Kapcsolat: 27868264
  3. Sandovici Adrian. Von Neumann's theorem for linear relations. (2018) LINEAR AND MULTILINEAR ALGEBRA 0308-1087 1563-5139 66 9 1750-1756
    Journal Article/Article (Journal Article)/Scientific[27565733] [Validated]
    Független, Idéző: 27565733, Kapcsolat: 27565733
  4. Corso Rosario. Maximal Operators with Respect to the Numerical Range. (2018) COMPLEX ANALYSIS AND OPERATOR THEORY 1661-8254 1661-8262 p. 1
    Journal Article/Article (Journal Article)/Scientific[30440476] [Validated]
    Független, Idéző: 30440476, Kapcsolat: 27868215
  5. Sandovici A.. A range matrix-type criterion for the self-adjointness of symmetric linear relations. (2018) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 p. 1
    Journal Article/Article (Journal Article)/Scientific[30440389] [Validated]
    Független, Idéző: 30440389, Kapcsolat: 27868270
  6. Sandovici Adrian. Von Neumann’s theorem for linear relations. (2017) LINEAR AND MULTILINEAR ALGEBRA 0308-1087 1563-5139 2017 1-7
    Journal Article/Article (Journal Article)/Scientific[27207403] [Approved]
    Független, Idéző: 27207403, Kapcsolat: 27207352
  7. Hirasawa G. Selfadjoint operators and symmetric operators. (2016)
    Miscellaneous/Scientific[26333739] [Approved]
    Független, Idéző: 26333739, Kapcsolat: 26333739
Sebestyén Zoltán et al. Lebesgue decomposition theorems. (2013) ACTA SCIENTIARUM MATHEMATICARUM - SZEGED 0001-6969 79 1-2 219-233, 2532851
Journal Article/Article (Journal Article)/Scientific[2532851]
  1. Corso R.. A Lebesgue-type decomposition for non-positive sesquilinear forms. (2019) ANNALI DI MATEMATICA PURA ED APPLICATA 0373-3114 1618-1891 198 1 273-288
    Journal Article/Article (Journal Article)/Scientific[30789532] [Validated]
    Független, Idéző: 30789532, Kapcsolat: 27867978
  2. Seppo Hassi. Factorization, majorization, and domination for linear relations. (2015) ANNALES UNIVERSITATIS SCIENTIARUM BUDAPESTINENSIS DE ROLANDO EÖTVÖS NOMINATAE - SECTIO MATHEMATICA 0524-9007 58 55-72
    Journal Article[26072709] [Approved]
    Független, Idéző: 26072709, Kapcsolat: 26072709
  3. Szűcs Zsolt. Absolute continuity of positive linear functionals. (2015) BANACH JOURNAL OF MATHEMATICAL ANALYSIS 1735-8787 9 2 201-247
    Journal Article/Article (Journal Article)/Scientific[2820900] [Admin approved]
    Független, Idéző: 2820900, Kapcsolat: 24401573
  4. Titkos T. On Means of Nonnegative Sesquilinear Forms. (2014) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 143 515-533
    Journal Article/Article (Journal Article)/Scientific[2569368] [Admin approved]
    Független, Idéző: 2569368, Kapcsolat: 25900055
Tarcsay Z. A functional analytic proof of the lebesgue-darst decomposition theorem. (2013) REAL ANALYSIS EXCHANGE 0147-1937 40 1 219-226, 2990727
Journal Article/Article (Journal Article)/Scientific[2990727]
  1. Titkos Tamás. The singular part as fixed point. (2018) AMERICAN MATHEMATICAL MONTHLY 0002-9890 125 77-80
    Journal Article/Article (Journal Article)/Scientific[3256667] [Validated]
    Független, Idéző: 3256667, Kapcsolat: 27207348
  2. Titkos Tamás. The singular part as fixed point. (2018) AMERICAN MATHEMATICAL MONTHLY 0002-9890 125 77-80
    Journal Article/Article (Journal Article)/Scientific[3256667] [Validated]
    Független, Idéző: 3256667, Kapcsolat: 29011036
  3. Titkos Tamás. Decomposition theory of forms. (2016)
    Thesis/PhD (Thesis)/Scientific[3171390] [Checked]
    Független, Idéző: 3171390, Kapcsolat: 27868177
  4. Titkos Tamás. A Simple Proof of the Lebesgue Decomposition Theorem. (2015) AMERICAN MATHEMATICAL MONTHLY 0002-9890 122 8 793-794
    Journal Article/Article (Journal Article)/Scientific[2988720] [Admin approved]
    Független, Idéző: 2988720, Kapcsolat: 26333750
  5. Titkos Tamás. A Simple Proof of the Lebesgue Decomposition Theorem. (2015) AMERICAN MATHEMATICAL MONTHLY 0002-9890 122 8 793-794
    Journal Article/Article (Journal Article)/Scientific[2988720] [Admin approved]
    Független, Idéző: 2988720, Kapcsolat: 27207342
  6. Titkos T. On Means of Nonnegative Sesquilinear Forms. (2014) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 143 515-533
    Journal Article/Article (Journal Article)/Scientific[2569368] [Admin approved]
    Független, Idéző: 2569368, Kapcsolat: 24981491
  7. Titkos T. On Means of Nonnegative Sesquilinear Forms. (2014) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 143 515-533
    Journal Article/Article (Journal Article)/Scientific[2569368] [Admin approved]
    Független, Idéző: 2569368, Kapcsolat: 26333752
Tarcsay Z. Lebesgue-type decomposition of positive operators. (2013) POSITIVITY 1385-1292 1572-9281 17 3 803-817, 2406309
Journal Article/Article (Journal Article)/Scientific[2406309]
  1. Arlinskiĭ Yu.M.. Shorting, parallel addition and form sums of nonnegative selfadjoint linear relations. (2020) LINEAR ALGEBRA AND ITS APPLICATIONS 0024-3795 1873-1856 599 156-200
    Journal Article/Article (Journal Article)/Scientific[31325285] [Approved]
    Független, Idéző: 31325285, Kapcsolat: 29011092
  2. Hassi S. et al. Lebesgue type decompositions for linear relations and Ando's uniqueness criterion. (2018) ACTA SCIENTIARUM MATHEMATICARUM - SZEGED 0001-6969 84 3-4 465-507
    Journal Article/Article (Journal Article)/Scientific[30349889] [Validated]
    Független, Idéző: 30349889, Kapcsolat: 27867893
  3. Yury M Arlinskii. On the mappings connected with parallel addition of nonnegative operators. (2017) POSITIVITY 1385-1292 1572-9281 21 1 299-327
    Journal Article/Article (Journal Article)/Scientific[26437345] [Approved]
    Független, Idéző: 26437345, Kapcsolat: 26437345
  4. Tarcsay Z. Radon–Nikodym Theorems for Nonnegative Forms, Measures and Representable Functionals. (2016) COMPLEX ANALYSIS AND OPERATOR THEORY 1661-8254 1661-8262 10 3 479-494
    Journal Article/Article (Journal Article)/Scientific[3038311] [Admin approved]
    Független, Idéző: 3038311, Kapcsolat: 25789289
  5. Titkos Tamás. Positive definite operator functions and sesquilinear forms. (2015) ANNALES UNIVERSITATIS SCIENTIARUM BUDAPESTINENSIS DE ROLANDO EÖTVÖS NOMINATAE - SECTIO MATHEMATICA 0524-9007 58 - 115-124
    Journal Article/Article (Journal Article)/Scientific[2988719] [Admin approved]
    Független, Idéző: 2988719, Kapcsolat: 27207437
  6. Szűcs Zsolt. Absolute continuity of positive linear functionals. (2015) BANACH JOURNAL OF MATHEMATICAL ANALYSIS 1735-8787 9 2 201-247
    Journal Article/Article (Journal Article)/Scientific[2820900] [Admin approved]
    Független, Idéző: 2820900, Kapcsolat: 27207439
  7. Titkos T. On Means of Nonnegative Sesquilinear Forms. (2014) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 143 515-533
    Journal Article/Article (Journal Article)/Scientific[2569368] [Admin approved]
    Független, Idéző: 2569368, Kapcsolat: 24777436
  8. Titkos T. Lebesgue decomposition of contents via nonnegative forms. (2013) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 140 1-2 151-161
    Journal Article/Article (Journal Article)/Scientific[2385713] [Admin approved]
    Független, Idéző: 2385713, Kapcsolat: 23323710
Sebestyén Z. A reversed von Neumann theorem. (2014) ACTA SCIENTIARUM MATHEMATICARUM - SZEGED 0001-6969 80 3-4 659-664, 2853826
Journal Article/Article (Journal Article)/Scientific[2853826]
  1. Gesztesy Fritz et al. Some Remarks on the Operator T^* T. (2018)
    Miscellaneous/Scientific[27207408] [Approved]
    Független, Idéző: 27207408, Kapcsolat: 27207408
  2. Boucif Imene et al. On The Absolute Value of Unbounded Operators. (2018)
    Miscellaneous/Publication in repository (Miscellaneous)/Scientific[30440644] [Admin approved]
    Független, Idéző: 30440644, Kapcsolat: 27868460
  3. Sandovici Adrian. Von Neumann’s theorem for linear relations. (2017) LINEAR AND MULTILINEAR ALGEBRA 0308-1087 1563-5139 2017 1-7
    Journal Article/Article (Journal Article)/Scientific[27207403] [Approved]
    Független, Idéző: 27207403, Kapcsolat: 27207403
Tarcsay Z. Closed range positive operators on Banach spaces. (2014) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 142 2 494-501, 2542482
Journal Article/Article (Journal Article)/Scientific[2542482]
  1. Harris Isaac et al. Analysis of new direct sampling indicators for far-field measurements. (2019)
    Book/Not classified (Book)/Educational[30440542] [Approved]
    Független, Idéző: 30440542, Kapcsolat: 27868339
  2. Harris Isaac et al. Analysis of new direct sampling indicators for far-field measurements. (2019) INVERSE PROBLEMS 0266-5611 35 5
    Journal Article/Article (Journal Article)/Scientific[31077938] [Validated]
    Független, Idéző: 31077938, Kapcsolat: 28660978
  3. Vosough Mehdi et al. Closed range and nonclosed range adjointable operators on Hilbert -modules. (2018) POSITIVITY 1385-1292 1572-9281 22 3 701-710
    Journal Article/Article (Journal Article)/Scientific[27565810] [Validated]
    Független, Idéző: 27565810, Kapcsolat: 27565810
  4. Vosough Mehdi et al. Closed range and nonclosed range adjointable operators on Hilbert $ $ C^* $ $-modules. (2017) POSITIVITY 1385-1292 1572-9281 1-10
    Journal Article/Scientific[27207392] [Approved]
    Független, Idéző: 27207392, Kapcsolat: 27207392
Popovici D et al. On the sum between a closable operator T and a T-bounded operator. (2015) ANNALES UNIVERSITATIS SCIENTIARUM BUDAPESTINENSIS DE ROLANDO EÖTVÖS NOMINATAE - SECTIO MATHEMATICA 0524-9007 58 95-104, 3079729
Journal Article/Article (Journal Article)/Scientific[3079729]
  1. Sandovici Adrian. On the Adjoint of Linear Relations in Hilbert Spaces. (2020) MEDITERRANEAN JOURNAL OF MATHEMATICS 1660-5446 17 2
    Journal Article/Article (Journal Article)/Scientific[31325292] [Approved]
    Független, Idéző: 31325292, Kapcsolat: 29011051
Sebestyén Z et al. Characterizations of essentially self-adjoint and skew-adjoint operators. (2015) STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA 0081-6906 1588-2896 52 3 371-385, 2969008
Journal Article/Article (Journal Article)/Scientific[2969008]
  1. Sandovici Adrian. On the Adjoint of Linear Relations in Hilbert Spaces. (2020) MEDITERRANEAN JOURNAL OF MATHEMATICS 1660-5446 17 2
    Journal Article/Article (Journal Article)/Scientific[31325292] [Approved]
    Független, Idéző: 31325292, Kapcsolat: 29011016
Sebestyén Z et al. Operators having selfadjoint squares. (2015) ANNALES UNIVERSITATIS SCIENTIARUM BUDAPESTINENSIS DE ROLANDO EÖTVÖS NOMINATAE - SECTIO MATHEMATICA 0524-9007 58 105-110, 3079747
Journal Article/Article (Journal Article)/Scientific[3079747]
  1. Sandovici Adrian. On the Adjoint of Linear Relations in Hilbert Spaces. (2020) MEDITERRANEAN JOURNAL OF MATHEMATICS 1660-5446 17 2
    Journal Article/Article (Journal Article)/Scientific[31325292] [Approved]
    Független, Idéző: 31325292, Kapcsolat: 29011054
  2. Sandovici Adrian. Self-adjointness and skew-adjointness criteria involving powers of linear relations. (2019) JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 0022-247X 1096-0813 470 1 186-200
    Journal Article/Article (Journal Article)/Scientific[30440374] [Validated]
    Független, Idéző: 30440374, Kapcsolat: 27868529
  3. Sandovici A.. A range matrix-type criterion for the self-adjointness of symmetric linear relations. (2018) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 p. 1
    Journal Article/Article (Journal Article)/Scientific[30440389] [Validated]
    Független, Idéző: 30440389, Kapcsolat: 27868531
Tarcsay Z. On the parallel sum of positive operators, forms, and functionals. (2015) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 147 2 408-426, 2937121
Journal Article/Article (Journal Article)/Scientific[2937121]
  1. Arlinskiĭ Yu.M.. Shorting, parallel addition and form sums of nonnegative selfadjoint linear relations. (2020) LINEAR ALGEBRA AND ITS APPLICATIONS 0024-3795 1873-1856 599 156-200
    Journal Article/Article (Journal Article)/Scientific[31325285] [Approved]
    Független, Idéző: 31325285, Kapcsolat: 29011011
  2. Titkos Tamás. Arlinskii's iteration and its applications. (2019) PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY 0013-0915 1464-3839 62 1 125-133
    Journal Article/Article (Journal Article)/Scientific[3256669] [Admin approved]
    Független, Idéző: 3256669, Kapcsolat: 28050575
  3. Friedrich J et al. A GENERALIZED SCHUR COMPLEMENT FOR NONNEGATIVE OPERATORS ON LINEAR SPACES. (2018) BANACH JOURNAL OF MATHEMATICAL ANALYSIS 1735-8787 12 3 617-633
    Journal Article/Article (Journal Article)/Scientific[27565840] [Validated]
    Független, Idéző: 27565840, Kapcsolat: 27565840
  4. Friedrich J. A generalized Schur complement for non-negative operators on linear space. (2017)
    Miscellaneous/Scientific[27207382] [Approved]
    Független, Idéző: 27207382, Kapcsolat: 27207382
  5. Titkos Tamás. Decomposition theory of forms. (2016)
    Thesis/PhD (Thesis)/Scientific[3171390] [Checked]
    Független, Idéző: 3171390, Kapcsolat: 27868295
  6. Titkos Tamás. Arlinskii's iteration and its applications. (2016)
    Miscellaneous/Scientific[27207384] [Approved]
    Független, Idéző: 27207384, Kapcsolat: 27207384
Tarcsay Zsigmond. Lebesgue decomposition via Riesz orthogonal decomposition. (2015) ANNALES UNIVERSITATIS SCIENTIARUM BUDAPESTINENSIS DE ROLANDO EÖTVÖS NOMINATAE - SECTIO MATHEMATICA 0524-9007 58 111-114, 3191352
Journal Article/Article (Journal Article)/Scientific[3191352]
  1. Josefina Alvarez et al. About and beyond the Lebesgue decomposition of a signed measure. (2016) LECTURAS MATEMATICAS 0120-1980 37 2 79-103
    Journal Article[26437338] [Approved]
    Független, Idéző: 26437338, Kapcsolat: 26437338
Titkos T et al. A short-type decomposition of forms. (2015) OPERATORS AND MATRICES 1846-3886 9 4 815-830, 2993820
Journal Article/Article (Journal Article)/Scientific[2993820]
  1. Titkos Tamás. Positive definite operator functions and sesquilinear forms. (2015) ANNALES UNIVERSITATIS SCIENTIARUM BUDAPESTINENSIS DE ROLANDO EÖTVÖS NOMINATAE - SECTIO MATHEMATICA 0524-9007 58 - 115-124
    Journal Article/Article (Journal Article)/Scientific[2988719] [Admin approved]
    Független, Idéző: 2988719, Kapcsolat: 26790748
Sebestyén Zoltán et al. Adjoint of sums and products of operators in Hilbert spaces. (2016) ACTA SCIENTIARUM MATHEMATICARUM - SZEGED 0001-6969 82 1-2 175-191, 3084669
Journal Article/Article (Journal Article)/Scientific[3084669]
  1. Sandovici Adrian. Self-adjointness and skew-adjointness criteria involving powers of linear relations. (2019) JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 0022-247X 1096-0813 470 1 186-200
    Journal Article/Article (Journal Article)/Scientific[30440374] [Validated]
    Független, Idéző: 30440374, Kapcsolat: 27868378
  2. Sandovici Adrian. Von Neumann's theorem for linear relations. (2018) LINEAR AND MULTILINEAR ALGEBRA 0308-1087 1563-5139 66 9 1750-1756
    Journal Article/Article (Journal Article)/Scientific[27565733] [Validated]
    Független, Idéző: 27565733, Kapcsolat: 27530071
  3. Sandovici A.. A range matrix-type criterion for the self-adjointness of symmetric linear relations. (2018) ACTA MATHEMATICA HUNGARICA 0236-5294 1588-2632 p. 1
    Journal Article/Article (Journal Article)/Scientific[30440389] [Validated]
    Független, Idéző: 30440389, Kapcsolat: 27868387
  4. Sandovici Adrian. Von Neumann’s theorem for linear relations. (2017) LINEAR AND MULTILINEAR ALGEBRA 0308-1087 1563-5139 2017 1-7
    Journal Article/Article (Journal Article)/Scientific[27207403] [Approved]
    Független, Idéző: 27207403, Kapcsolat: 27207397
Tarcsay Z. Radon–Nikodym Theorems for Nonnegative Forms, Measures and Representable Functionals. (2016) COMPLEX ANALYSIS AND OPERATOR THEORY 1661-8254 1661-8262 10 3 479-494, 3038311
Journal Article/Article (Journal Article)/Scientific[3038311]
  1. Hassi S. et al. Lebesgue type decompositions for linear relations and Ando's uniqueness criterion. (2018) ACTA SCIENTIARUM MATHEMATICARUM - SZEGED 0001-6969 84 3-4 465-507
    Journal Article/Article (Journal Article)/Scientific[30349889] [Validated]
    Független, Idéző: 30349889, Kapcsolat: 27868289
  2. Corso R.. A survey on solvable sesquilinear forms. (2018) In: Operator Theory: Advances and Applications pp. 167-177
    Chapter in Book/Chapter (Chapter in Book)/Scientific[30369860] [Approved]
    Független, Idéző: 30369860, Kapcsolat: 27868284
  3. Corso Rosario. A Kato's second type representation theorem for solvable sesquilinear forms. (2018) JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 0022-247X 1096-0813 462 1 982-998
    Journal Article/Article (Journal Article)/Scientific[27565729] [Validated]
    Független, Idéző: 27565729, Kapcsolat: 27207370
  4. Corso Rosario. A Survey on Solvable Sesquilinear Forms. (2017)
    Miscellaneous/Scientific[27207372] [Approved]
    Független, Idéző: 27207372, Kapcsolat: 27207372
  5. Titkos Tamás. Decomposition theory of forms. (2016)
    Thesis/PhD (Thesis)/Scientific[3171390] [Checked]
    Független, Idéző: 3171390, Kapcsolat: 27868277
  6. Titkos Tamás. Positive definite operator functions and sesquilinear forms. (2015) ANNALES UNIVERSITATIS SCIENTIARUM BUDAPESTINENSIS DE ROLANDO EÖTVÖS NOMINATAE - SECTIO MATHEMATICA 0524-9007 58 - 115-124
    Journal Article/Article (Journal Article)/Scientific[2988719] [Admin approved]
    Független, Idéző: 2988719, Kapcsolat: 27207364
Sebestyen Z et al. On the square root of a positive selfadjoint operator. (2017) PERIODICA MATHEMATICA HUNGARICA 0031-5303 1588-2829 75 2 268-272, 3293570
Journal Article/Article (Journal Article)/Scientific[3293570]
  1. Roman Marcel et al. THE SQUARE ROOT OF NONNEGATIVE SELFADJOINT LINEAR RELATIONS IN HILBERT SPACES. (2019) JOURNAL OF OPERATOR THEORY 0379-4024 82 2 357-367
    Journal Article/Article (Journal Article)/Scientific[31089104] [Validated]
    Független, Idéző: 31089104, Kapcsolat: 28681092
  2. Boucif Imene et al. ON THE ABSOLUTE VALUE OF UNBOUNDED OPERATORS. (2019) JOURNAL OF OPERATOR THEORY 0379-4024 82 2 285-306
    Journal Article/Article (Journal Article)/Scientific[31089105] [Validated]
    Független, Idéző: 31089105, Kapcsolat: 28681094
  3. Much Albert et al. Self-Adjointness in Klein-Gordon Theory on Globally Hyperbolic Spacetimes. (2018)
    Miscellaneous/Publication in repository (Miscellaneous)/Scientific[30440678] [Admin approved]
    Független, Idéző: 30440678, Kapcsolat: 27868496
  4. Boucif Imene et al. On The Absolute Value of Unbounded Operators. (2018)
    Miscellaneous/Publication in repository (Miscellaneous)/Scientific[30440644] [Admin approved]
    Független, Idéző: 30440644, Kapcsolat: 27868490
  5. Much Albert et al. Complex Structures for Klein-Gordon Theory on Globally Hyperbolic Spacetimes. (2018)
    Miscellaneous/Publication in repository (Miscellaneous)/Scientific[30440690] [Admin approved]
    Független, Idéző: 30440690, Kapcsolat: 27868507
2020-08-09 16:06