Janosi I M et al. DYNAMICS OF WATER DROPLETS ON A WINDOW PANE. (1989) PHYSICAL REVIEW A 1050-2947 1094-1622 2469-9926 2469-9934 40 9 5232-5237,
1005639
Szakcikk (Folyóiratcikk) | Tudományos[1005639]
Song Zhixiong et al. Fog Harvesting with Highly Wetting and Nonwetting Vertical Strips. (2022) LANGMUIR 0743-7463 1520-5827 38 5 1845-1852
Chen K-C et al. A hybrid method for water droplet simulation. (2012) Megjelent: Proceedings - VRCAI 2012: 11th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry pp. 341-344
Faybishenko B. Nonlinear dynamics in flow through unsaturated fractured porous media: Status and perspectives. (2004) REVIEWS OF GEOPHYSICS 8755-1209 1944-9208 42 2
Pruess K et al. Alternative concepts and approaches for modeling flow and transport in thick unsaturated zones of fractured rocks. (1999) JOURNAL OF CONTAMINANT HYDROLOGY 0169-7722 1873-6009 38 1-3 281-322
Andrade RFS et al. Analysis of rainfall records: possible relation to self-organized criticality. (1998) PHYSICA A - STATISTICAL MECHANICS AND ITS APPLICATIONS 0378-4371 1873-2119 254 3-4 557-568
SHI Y et al. SCALING EXPONENTS AND POWER SPECTRUM OF SELF-ORGANIZED CRITICALITY. (1993) COMMUNICATIONS IN THEORETICAL PHYSICS 0253-6102 1572-9494 19 2 157-162
Kaneda K et al. Animation of water droplets on a glass plate. (1993) Megjelent: Computer Animation '93 Models and Techniques in Computer Animation pp. 177-189
HUANG J et al. A CELLULAR-AUTOMATA, SLIDER-BLOCK MODEL FOR EARTHQUAKES .2. DEMONSTRATION OF SELF-ORGANIZED CRITICALITY FOR A 2-D SYSTEM. (1992) GEOPHYSICAL JOURNAL INTERNATIONAL 0956-540X 1365-246X 111 2 259-269
MANNA SS. CRITICAL EXPONENTS OF THE SAND PILE MODELS IN 2 DIMENSIONS. (1991) PHYSICA A - STATISTICAL MECHANICS AND ITS APPLICATIONS 0378-4371 1873-2119 179 2 249-268
Manna S S et al. Correlations and scaling in the outow statistics of a sandpile automaton. (1991) PHYSICA A - STATISTICAL MECHANICS AND ITS APPLICATIONS 0378-4371 1873-2119 173 49-59
Schwartsman E et al. Bubble noise in aqueous ionic solution. (1991) Megjelent: Procedings of the International Conference on Noise in Physical Systems and 1/f Fluctuations (ICNF91) pp. 133-136
MANNA SS. 2-STATE MODEL OF SELF-ORGANIZED CRITICALITY. (1991) JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL 0305-4470 1361-6447 1751-8121 1751-8113 24 7 L363-L369
Kertész J et al. The noise spectrum in the model of self-organized criticality. (1990) JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL 0305-4470 1361-6447 1751-8121 1751-8113 23 L433-L440
Rövid közlemény (Folyóiratcikk) | Tudományos[1028943] [Admin láttamozott]
Meakin P. COALESCENCE OF DRIFTING DROPLETS AND BUBBLES IN 2-DIMENSIONAL AND 3-DIMENSIONAL SPACE. (1990) PHYSICAL REVIEW A 2469-9926 2469-9934 42 4678-4687
Janosi I M. EFFECT OF ANISOTROPY ON THE SELF-ORGANIZED CRITICAL STATE. (1990) PHYSICAL REVIEW A 1050-2947 1094-1622 2469-9926 2469-9934 42 2 769-774,
1005638
Szakcikk (Folyóiratcikk) | Tudományos[1005638]
Niehues Jakob et al. Self-organized quantization and oscillations on continuous fixed-energy sandpiles. (2022) PHYSICAL REVIEW E: COVERING STATISTICAL NONLINEAR BIOLOGICAL AND SOFT MATTER PHYSICS (2016-) 2470-0045 2470-0053 105 3
Acharyya Ajanta Bhowal. BTW MODEL WITH PROBABILISTICALLY NONUNIFORM DISTRIBUTION OF PARTICLES COMING FROM THE UNSTABLE SITES. (2017) ACTA PHYSICA POLONICA B 0587-4254 1509-5770 48 2 207-215
Fey-den Boer A et al. Uniqueness of the stationary distribution and stabilizability in Zhang's sandpile model. (2009) ELECTRONIC JOURNAL OF PROBABILITY 1083-6489 1083-6489 14 895-911
Sadhu T et al. Emergence of quasiunits in the one-dimensional Zhang model. (2008) PHYSICAL REVIEW E - STATISTICAL, NONLINEAR AND SOFT MATTER PHYSICS (2001-2015) 1539-3755 1550-2376 77 3
Giacometti A et al. Dynamical properties of the Zhang model of self-organized criticality. (1998) PHYSICAL REVIEW E - STATISTICAL PHYSICS, PLASMAS, FLUIDS AND RELATED INTERDISCIPLINARY TOPICS (1993-2000) 1063-651X 1095-3787 58 1 247-253
Lübeck S. Computer-Simulationen zur Bestimmung der Universalitätsklassen selbstorganisiert kritischer Systeme: PhD Thesis, Gerhard Mercator Universität, Duisburg. (1998)
Nem besorolt (Disszertáció) | Tudományos[22290925] [Admin láttamozott]
Corral A et al. Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality. (1997) PHYSICAL REVIEW E - STATISTICAL PHYSICS, PLASMAS, FLUIDS AND RELATED INTERDISCIPLINARY TOPICS (1993-2000) 1063-651X 1095-3787 55 3 2434-2445
Lübeck S. Large-scale simulations of the Zhang sandpile model. (1997) PHYSICAL REVIEW E - STATISTICAL PHYSICS, PLASMAS, FLUIDS AND RELATED INTERDISCIPLINARY TOPICS (1993-2000) 1063-651X 1095-3787 56 2 1590-1594
Csilling Á et al. Absence of chaos in a self-organized critical coupled map lattice. (1994) PHYSICAL REVIEW E - STATISTICAL PHYSICS, PLASMAS, FLUIDS AND RELATED INTERDISCIPLINARY TOPICS (1993-2000) 1063-651X 1095-3787 50 2 1083-1092
Diaz-Guilera A. NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS AND SELF-ORGANIZED CRITICALITY. (1993) FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 0218-348X 1793-6543 1 4 963-967
DIAZGUILERA A. NOISE AND DYNAMICS OF SELF-ORGANIZED CRITICAL PHENOMENA. (1992) PHYSICAL REVIEW A 1050-2947 1094-1622 2469-9926 2469-9934 45 12 8551-8558
Fodor Z et al. Results on the continuous energy self organised critical model in one dimension. (1991) PHYSICAL REVIEW A 2469-9926 2469-9934 44 2 1386-1389
Routra N. et al. Influence of γ-Irradiation on the Thermal Decomposition Of (BaC2O4+CuO) Mixture. (2014) JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 1388-6150 1572-8943 1588-2926 51 2 585-594
Fodor Z et al. Results on the continuous energy self organised critical model in one dimension. (1991) PHYSICAL REVIEW A 2469-9926 2469-9934 44 2 1386-1389,
1046535
Szakcikk (Folyóiratcikk) | Tudományos[1046535]
Corral A et al. Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality. (1997) PHYSICAL REVIEW E - STATISTICAL PHYSICS, PLASMAS, FLUIDS AND RELATED INTERDISCIPLINARY TOPICS (1993-2000) 1063-651X 1095-3787 55 3 2434-2445
Diaz-Guilera A. NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS AND SELF-ORGANIZED CRITICALITY. (1993) FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 0218-348X 1793-6543 1 4 963-967
Bantay P et al. SELF-ORGANIZATION AND ANOMALOUS DIFFUSION. (1992) PHYSICA A - STATISTICAL MECHANICS AND ITS APPLICATIONS 0378-4371 1873-2119 185 1-4 11-18
DIAZGUILERA A. NOISE AND DYNAMICS OF SELF-ORGANIZED CRITICAL PHENOMENA. (1992) PHYSICAL REVIEW A 1050-2947 1094-1622 2469-9926 2469-9934 45 12 8551-8558
Bantay P et al. AVALANCHE DYNAMICS FROM ANOMALOUS DIFFUSION. (1992) PHYSICAL REVIEW LETTERS 0031-9007 1079-7114 68 13 2058-2061,
1005636
Szakcikk (Folyóiratcikk) | Tudományos[1005636]
Sayfidinov Okhunjon et al. Review on Relationship Between the Universality Class of the Kardar-Parisi-Zhang Equation and the Ballistic Deposition Model. (2021) INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING 1734-4492 2353-9003 26 4 206-216
Kwon Dohyun et al. Degenerate nonlinear parabolic equations with discontinuous diffusion coefficients. (2021) JOURNAL OF THE LONDON MATHEMATICAL SOCIETY 0024-6107 1469-7750 104 2 688-746
Mosco Umberto et al. ON A DISCRETE SELF-ORGANIZED-CRITICALITY FINITE TIME RESULT. (2020) DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS SERIES A 1078-0947 1553-5231 40 8 5079-5103
Belaribi N. et al. Probabilistic and deterministic algorithms for space multidimensional irregular porous media equation. (2013) STOCHASTICS PARTIAL DIFFERENTIAL EQUATIONS: ANALYSIS AND COMPUTATIONS 2194-0401 2194-041X 1 1 p. 1:3–
Anta JA et al. A continuity equation for the simulation of the current-voltage curve and the time-dependent properties of dye-sensitized solar cells. (2012) PHYSICAL CHEMISTRY CHEMICAL PHYSICS 1463-9076 1463-9084 14 29 10285-10299
Barbu V et al. Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case. (2011) PROBABILITY THEORY AND RELATED FIELDS 0178-8051 1432-2064 151 1-2 1-43
Blanchard P et al. PROBABILISTIC REPRESENTATION FOR SOLUTIONS OF AN IRREGULAR POROUS MEDIA TYPE EQUATION. (2010) ANNALS OF PROBABILITY 0091-1798 2168-894X 38 5 1870-1900
Sánchez R. Plasma turbulent transport modelling by means of Lévy distributions. (2006) Megjelent: New Developments in Nuclear Fusion Research pp. 21-49
Schulz M.. Control theory in physics and other fields of science: Concepts, tools, and applications. (2006) SPRINGER TRACTS IN MODERN PHYSICS 0081-3869 215 1-293
Sanchez R et al. Fluid limit of nonintegrable continuous-time random walks in terms of fractional differential equations. (2005) PHYSICAL REVIEW E - STATISTICAL, NONLINEAR AND SOFT MATTER PHYSICS (2001-2015) 1539-3755 1550-2376 71 1
Katzav E et al. What is the connection between ballistic deposition and the Kardar-Parisi-Zhang equation?. (2004) PHYSICAL REVIEW E - STATISTICAL, NONLINEAR AND SOFT MATTER PHYSICS (2001-2015) 1539-3755 1550-2376 70 6
Isliker H et al. Random walk through fractal environments. (2003) PHYSICAL REVIEW E - STATISTICAL, NONLINEAR AND SOFT MATTER PHYSICS (2001-2015) 1539-3755 1550-2376 67 2
Zaiser M et al. On the dynamic interaction between moving dislocations. (1998) APPLIED PHYSICS A - MATERIALS SCIENCE AND PROCESSING 0947-8396 1432-0630 66 393-397
Hahner P et al. Dynamics of a creep-slip model of earthquake faults. (1998) PHYSICA A - STATISTICAL MECHANICS AND ITS APPLICATIONS 0378-4371 1873-2119 260 391-417
Krommes J A. Systematic statistical theories of plasma turbulence and intermittency: Current status and future prospects. (1997) PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 0370-1573 1873-6270 283 5-48
Corral A et al. Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality. (1997) PHYSICAL REVIEW E - STATISTICAL PHYSICS, PLASMAS, FLUIDS AND RELATED INTERDISCIPLINARY TOPICS (1993-2000) 1063-651X 1095-3787 55 3 2434-2445
Perez CJ et al. On self-organized criticality and synchronization in lattice models of coupled dynamical systems. (1996) INTERNATIONAL JOURNAL OF MODERN PHYSICS B 0217-9792 1793-6578 10 10 1111-1151
Diaz-Guilera A. NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS AND SELF-ORGANIZED CRITICALITY. (1993) FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 0218-348X 1793-6543 1 4 963-967
Bantay P et al. SELF-ORGANIZATION AND ANOMALOUS DIFFUSION. (1992) PHYSICA A - STATISTICAL MECHANICS AND ITS APPLICATIONS 0378-4371 1873-2119 185 1-4 11-18,
1005635
Szakcikk (Folyóiratcikk) | Tudományos[1005635]
Marinoschi G.. Dual Variational Approach to Nonlinear Diffusion Equations. (2023) Megjelent: Progress in Nonlinear Differential Equations and Their Application pp. 1-209
Alberini C. et al. A Numerical Approach to a Nonlinear Diffusion Model for Self-Organized Criticality Phenomena. (2021) Megjelent: FRACTALS IN ENGINEERING: THEORETICAL ASPECTS AND NUMERICAL APPROXIMATIONS pp. 1-25
Turra M.. Existence and extinction in finite time for stratonovich gradient noise porous media equations. (2019) EVOLUTION EQUATIONS AND CONTROL THEORY 2163-2472 2163-2480 8 4 867-882
Barbu Viorel. THE STEEPEST DESCENT ALGORITHM IN WASSERSTEIN METRIC FOR THE SANDPILE MODEL OF SELF-ORGANIZED CRITICALITY. (2017) SIAM JOURNAL ON CONTROL AND OPTIMIZATION 0363-0129 1095-7138 55 1 413-428
Ion Stelian et al. A SELF-ORGANIZING CRITICALITY MATHEMATICAL MODEL FOR CONTAMINATION AND EPIDEMIC SPREADING. (2017) DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B 1531-3492 1553-524X 22 2 383-405
Gess Benjamin. Finite Time Extinction for Stochastic Sign Fast Diffusion and Self-Organized Criticality. (2015) COMMUNICATIONS IN MATHEMATICAL PHYSICS 0010-3616 1432-0916 335 1 309-344
Marinoschi G. Variational Solutions to Nonlinear Diffusion Equations with Singular Diffusivity. (2014) JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 0022-3239 1573-2878 161 2 430-445
Barbu V. Self-organized criticality of cellular automata model; absorbtion in finite-time of supercritical region into the critical one. (2013) MATHEMATICAL METHODS IN THE APPLIED SCIENCES 0170-4214 1099-1476 36 13 1726-1733
Rockner M et al. General extinction results for stochastic partial differential equations and applications. (2013) JOURNAL OF THE LONDON MATHEMATICAL SOCIETY 0024-6107 1469-7750 87 545-560
Barbu V et al. Stochastic Porous Media Equations and Self-Organized Criticality: Convergence to the Critical State in all Dimensions. (2012) COMMUNICATIONS IN MATHEMATICAL PHYSICS 0010-3616 1432-0916 311 2 539-555