Figula A. Geodesic loops. (2000) JOURNAL OF LIE THEORY 0949-5932 0949-5932 10 455-461,
1068463
Szakcikk (Folyóiratcikk) | Tudományos[1068463]
José M. Pérez-Izquierdo. The use of Hopf algebras in the Lie theory of loops related to reductive homogeneous spaces. (2018) JOURNAL OF LIE THEORY 0949-5932 0949-5932 28 3 781-804
A N Grishkov et al. Lie’s correspondence for commutative automorphic formal loops. (2018) LINEAR ALGEBRA AND ITS APPLICATIONS 0024-3795 1873-1856 544 460-501
О Matveyev H. ALGEBRAIC PROPERTIES OF SOME CLASSES OF THE AFFINELY CONNECTED MANIFOLDS, CLOSE TO THE SYMMETRIC: АЛГЕБРАИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ КЛАССОВ АФФИННО - СВЯЗНЫХ МНОГООБРАЗИЙ , БЛИЗКИХ К СИММЕТРИЧЕСКИМ. (2011) VESTNIK MOSKOVSKOGO GOSUDARSTVENNOGO OBLASTNOGO UNIVERSITETA - SERIYA FIZIKA-MATEMATIKA 2072-8387 2310-7251 247 1 3-10
Nagy Gábor Péter. The Campbell-Hausdorff series of local analytic Bruck loops. (2002) ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG 0025-5858 1865-8784 72 79-87
Matveev O. On quasigroup theory of manifold with trajectories. (2000) Megjelent: Webs & quasigroups. Dedicated to the 65th birthday and 40 years of scientific activity of Professor Dr. Vladislav V. Goldberg. pp. 129-138
E Kuznetsov. A loop which can be represented as a semidirect product of two groups. (2014) Megjelent: The Third Conference of Mathematical Society of the Republic of Moldava pp. 120-123
Tadeusz Ostrowski. A note on semidirect sum of Lie algebras. (2013) DISCUSSIONES MATHEMATICAE GENERAL ALGEBRA AND APPLICATIONS 1509-9415 2084-0373 33 p. 233
Ameer Al-Abayechi. Topological loops having solvable Lie groups as their multiplication groups. (2020) Megjelent: IX. Interdiszciplináris Doktorandusz Konferencia 2020 [9th Interdisciplinary Doctoral Conference 2020] pp. 6-17
Figula Á et al. Graphical relationships between the infimum and intersection convolutions. (2010) MATHEMATICA PANNONICA 0865-2090 21 1 23-35,
1454591
Szakcikk (Folyóiratcikk) | Tudományos[1454591]
Glavosits Tamás et al. Sums and products of intervals in ordered groups and fields. (2021) ACTA UNIVERSITATIS SAPIENTIAE MATHEMATICA 1844-6094 2066-7752 13 1 182-191
Ameer Al-Abayechi. Topological loops having solvable Lie groups as their multiplication groups. (2020) Megjelent: IX. Interdiszciplináris Doktorandusz Konferencia 2020 [9th Interdisciplinary Doctoral Conference 2020] pp. 6-17
Figula Á. Multiplication Groups of Topological Loops. (2013) JOURNAL OF MATHEMATICAL SCIENCES 1072-3374 1573-8795 193 3 428-432,
2391227
Utánközlés (Folyóiratcikk) | Tudományos[2391227]
José M. Pérez-Izquierdo. The use of Hopf algebras in the Lie theory of loops related to reductive homogeneous spaces. (2018) JOURNAL OF LIE THEORY 0949-5932 0949-5932 28 3 781-804
Ágota Figula. Multiplication groups of topological loops (II). (2014) JOURNAL OF MATHEMATICAL SCIENCES 1072-3374 1573-8795 197 6 735-740,
2913025
Utánközlés (Folyóiratcikk) | Tudományos[2913025]
José M. Pérez-Izquierdo. The use of Hopf algebras in the Lie theory of loops related to reductive homogeneous spaces. (2018) JOURNAL OF LIE THEORY 0949-5932 0949-5932 28 3 781-804
Ameer Al-Abayechi. Topological loops having solvable Lie groups as their multiplication groups. (2020) Megjelent: IX. Interdiszciplináris Doktorandusz Konferencia 2020 [9th Interdisciplinary Doctoral Conference 2020] pp. 6-17
Bajalinov Erik et al. Seasonal time series forecasting by the Walsh-transformation based technique. (2020) CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH 1435-246X 1613-9178 28 3 983-1001
Ameer Al-Abayechi. Topological loops having solvable Lie groups as their multiplication groups. (2020) Megjelent: IX. Interdiszciplináris Doktorandusz Konferencia 2020 [9th Interdisciplinary Doctoral Conference 2020] pp. 6-17
Agota Figula. Quasi-simple Lie groups as multiplication groups of topological loops. (2015) ADVANCES IN GEOMETRY 1615-715X 1615-7168 15 3 315-331,
2814702
Szakcikk (Folyóiratcikk) | Tudományos[2814702]
Al-Abayechi Ameer. Topological loop with solvable multiplication group. (2021)
Ameer Al-Abayechi. Topological loops having solvable Lie groups as their multiplication groups. (2020) Megjelent: IX. Interdiszciplináris Doktorandusz Konferencia 2020 [9th Interdisciplinary Doctoral Conference 2020] pp. 6-17
José M. Pérez-Izquierdo. The use of Hopf algebras in the Lie theory of loops related to reductive homogeneous spaces. (2018) JOURNAL OF LIE THEORY 0949-5932 0949-5932 28 3 781-804
Á. Figula. Lie groups as multiplication groups of topological loops. (2016) JOURNAL OF MATHEMATICAL SCIENCES 1072-3374 1573-8795 218 6 742-747,
2814715
Szakcikk (Folyóiratcikk) | Tudományos[2814715]
José M. Pérez-Izquierdo. The use of Hopf algebras in the Lie theory of loops related to reductive homogeneous spaces. (2018) JOURNAL OF LIE THEORY 0949-5932 0949-5932 28 3 781-804
Giovanni Falcone et al. The action of a compact Lie group on nilpotent Lie algebras of type{n,2}. (2016) FORUM MATHEMATICUM 0933-7741 1435-5337 28 4 795-806,
2908438
Szakcikk (Folyóiratcikk) | Tudományos[2908438]
Bochenski Maciej et al. Stretched non-positive Weyl connections on solvable Lie groups. (2024) ANNALI DI MATEMATICA PURA ED APPLICATA 0373-3114 1618-1891 203 1463-1481
Á Figula et al. Loops as sections in compact Lie groups. (2017) ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG 0025-5858 1865-8784 87 1 61-68,
3081137
Szakcikk (Folyóiratcikk) | Tudományos[3081137]
José M. Pérez-Izquierdo. The use of Hopf algebras in the Lie theory of loops related to reductive homogeneous spaces. (2018) JOURNAL OF LIE THEORY 0949-5932 0949-5932 28 3 781-804
Cardoso Isolda et al. The moduli space of left‐invariant metrics on six‐dimensional characteristically solvable nilmanifolds. (2025) MATHEMATISCHE NACHRICHTEN 0025-584X 1522-2616 298
H. R. Salimi Moghaddam. An algebraic proof of the classification of 5-dimensional nilsolitons. (2024) Journal of the Iranian Mathematical Society 2717-1612 5 2 243-252
Bastos Raimundo et al. ADVANCES ON A CONSTRUCTION RELATED TO THE NON-ABELIAN TENSOR SQUARE OF A GROUP. (2023) INTERNATIONAL JOURNAL OF GROUP THEORY 2251-7650 2251-7669 12 2 111-121
Hosseini Masoumeh et al. Classification of Douglas (alpha, beta)-metrics on five-dimensional nilpotent Lie groups. (2020) INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS 0219-8878 1793-6977 17 8
Agota Figula et al. Topological loops with solvable multiplication groups of dimension at most six are centrally nilpotent. (2020) INTERNATIONAL JOURNAL OF GROUP THEORY 2251-7650 2251-7669 9 2 81-94,
30656874
Belova Olga et al. Our Friend and Mathematician Karl Strambach. (2020) RESULTS IN MATHEMATICS 1422-6383 1420-9012 75 2,
31427233
Szakcikk (Folyóiratcikk) | Tudományos[31427233]
Mamadiyar Sherkuziyev et al. The Rigidity And Analytical Inflexibility Of Single-Connected Convex Surfaces Related To A Point And A Plane Along The Edge. (2021) TURKISH ONLINE JOURNAL OF QUALITATIVE INQUIRY 1309-6591 12 7 4776-4782
Pavone Marco. A quasidouble of the affine plane of order 4 and the solution of a problem on additive designs. (2023) FINITE FIELDS AND THEIR APPLICATIONS 1071-5797 1090-2465 92
Á. Figula et al. Topological loops having solvable indecomposable Lie groups as their multiplication groups. (2021) TRANSFORMATION GROUPS 1083-4362 1531-586X 26 1 279-303,
31607167